Leetcode1971. 寻找图中是否存在路径
Every day a Leetcode
题目来源:1971. 寻找图中是否存在路径
解法1:并查集
并查集介绍:并查集详解
代码:
/** @lc app=leetcode.cn id=1971 lang=cpp** [1971] 寻找图中是否存在路径*/// @lc code=start
class UnionFind
{vector<int> father, size;public:UnionFind(int n) : father(n), size(n, 1){// iota函数可以把数组初始化为 0 到 n-1iota(father.begin(), father.end(), 0);}int find(int x){if (x == father[x])return x;elsereturn find(father[x]);}void connect(int p, int q){int fa_p = find(p), fa_q = find(q);if (fa_p != fa_q)father[fa_p] = fa_q;}bool isConnected(int p, int q){return find(p) == find(q);}
};class Solution
{
public:bool validPath(int n, vector<vector<int>> &edges, int source, int destination){UnionFind uf(n);for (vector<int> &edge : edges)uf.connect(edge[0], edge[1]);return uf.isConnected(source, destination);}
};
// @lc code=end
结果:

复杂度分析:
时间复杂度:O(n+m×α(m)),其中 n 是图中的顶点数,m 是图中边的数目,α 是反阿克曼函数。并查集的初始化需要 O(n) 的时间,然后遍历 m 条边并执行 m 次合并操作,最后对 source 和 destination 执行一次查询操作,查询与合并的单次操作时间复杂度是 O(α(m)),因此合并与查询的时间复杂度是 O(m×α(m)),总时间复杂度是 O(n+m×α(m))。
空间复杂度:O(n),其中 n 是图中的顶点数。并查集需要 O(n) 的空间。
解法2:深度优先搜索
首先从顶点 source 开始遍历并进行递归搜索。搜索时每次访问一个顶点 vertex 时,如果 vertex 等于 destination 则直接返回,否则将该顶点设为已访问,并递归访问与 vertex 相邻且未访问的顶点 next。如果通过 next 的路径可以访问到 destination,此时直接返回 true,当访问完所有的邻接节点仍然没有访问到 destination,此时返回 false。
代码:
class Solution
{
public:bool dfs(int source, int destination, vector<vector<int>> &adj, vector<bool> &visited){if (source == destination){return true;}visited[source] = true;for (int next : adj[source]){if (!visited[next] && dfs(next, destination, adj, visited)){return true;}}return false;}bool validPath(int n, vector<vector<int>> &edges, int source, int destination){vector<vector<int>> adj(n);for (auto &edge : edges){int x = edge[0], y = edge[1];adj[x].emplace_back(y);adj[y].emplace_back(x);}vector<bool> visited(n, false);return dfs(source, destination, adj, visited);}
};
结果:

复杂度分析:
时间复杂度:O(n+m),其中 n 表示图中顶点的数目,m 表示图中边的数目。
空间复杂度:O(n+m),其中 n 表示图中顶点的数目,m 表示图中边的数目。空间复杂度主要取决于邻接顶点列表、记录每个顶点访问状态的数组和递归调用栈,邻接顶点列表需要 O(m+n) 的存储空间,记录每个顶点访问状态的数组和递归调用栈分别需要 O(n) 的空间。
相关文章:
Leetcode1971. 寻找图中是否存在路径
Every day a Leetcode 题目来源:1971. 寻找图中是否存在路径 解法1:并查集 并查集介绍:并查集详解 代码: /** lc appleetcode.cn id1971 langcpp** [1971] 寻找图中是否存在路径*/// lc codestart class UnionFind {vector&…...
程序可以创建多少个用户界面对象?
有人提到这样一个问题:”一个程序最多可以注册多少个窗口类?” 问题的答案不是一个具体的数字。因为大多数用户界面对象都来自一个共享的内存池,我们称之为”桌面堆内存”。尽管我们可以计算一个最大的理论值,但是在实际的场景中࿰…...
业绩不俗,毛利率下滑,股价接连下跌,片仔癀将向何处去?
撰稿|行星 来源|贝多财经 10月16日,中药龙头企业漳州片仔癀药业股份有限公司(600436.SH,下称“片仔癀”)发布截至9月30日的2023年前三季度业绩报告。发布财报后,片仔癀的股价多日下跌。 10月17日、18日、19日和20日…...
云安全—docker容器镜像检测
0x00 前言 docker镜像是属于整个云原生的重要基石之一,如果从镜像开始就没有安全性的话,那么整个云原生也就没有任何的安全性可言。所以镜像检测技术就成为了一个比较重要的点,本篇将通过研究docker镜像工具来整体分析风险以及应对方案。 市…...
JDBC相关记录
JDBC:Java DadaBase Connectivity 即Java语言连接数据库。 本质:JDBC是SUN公司制定的一套接口(interface)。 作用:不同的数据库有自己独特设计原理,JDBC的可以让Java程序员关注业务本身,而不需要…...
Nginx的基本介绍 安装 配置文件 日志
一、Nginx介绍二、nginx的优点三、多路复用1、I/O multiplexing 多并发 四、nginx内部技术架构五、安装NginxNginx部署-yum安装获取Nginx的yum源yum安装Nginx浏览器访问 编译安装Nginx安装编译环境安装依赖环境创建nginx用户安装nginx启动nginx实现nginx开机自启(脚…...
docker部署nginx并设置挂载
前言: 最近在学习docker和nginx,因为容器在运行过程中,相关的配置文件及日志都会存在容器内。对容器以来较高,当容器不存在的时候。所有的文件也就都没有了。并且当需要查看日志,修改配置文件的时候必须进入到容器内部…...
MAC如何在根目录创建文件
在这之前先明确一下啥是根目录。 打开终端,输入cd /,然后输入 ls 查看根目录下有哪些文件 可以看到 usr、etc、opt 这些文件的地方才叫根目录,而不是以用户命名,可以看到音乐、应用程序、影片、桌面的地方哈 介绍一种叫做软连接…...
某全球领先的芯片供应商:优化数据跨网交换流程,提高安全管控能力
1、客户介绍 某全球领先的芯片供应商,成立于2005年,总部设于北京,在国内上海、深圳、合肥等地及国外多个国家和地区均设有分支机构和办事处,致力于为客户提供更优质、便捷的服务。 2、建设背景 该公司基于网络安全管理的需求&am…...
自然语言处理---文本预处理概述
自然语言处理(Natural Language Processing,简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域。其主要应用于:语音助手、机器翻译、搜索引擎、智能问答等。 文本预处理概述 文本语料在输送给模型前一般需要一…...
GCC编译器 什么是宏? 标识符和关键字
一.GCC是什么? GCC是用于编译C语言和其它语言的开源软件。 全称是 GNU Compiler Collection,意思是GNU编译器集和。 支持多种操作系统和硬件平台。二.GCC的作用 GCC的作用是将源码转换为可执行的文件,使之可以在计算机上运行。三.GCC编译c文…...
【GESP】2023年06月图形化三级 -- 自幂数判断
文章目录 自幂数判断【题目描述】【输入描述】【输出描述】【参考答案】其他测试用例 自幂数判断 【题目描述】 自幂数是指N位数各位数字N次方之和是本身,如153是3位数,其每位数的3次方之和是153本身,因此153是自幂数,1634是4位数…...
MySQL常见面试题
一、存储引擎相关 (1)MySQL 支持哪些存储引擎? MySQL支持多种存储引擎,比如InnoDB,MyISAM, MySQL大于等于5.5之后,默认存储引擎是InnoDB (2)InnoDB 和 MyISAM 有什么区别? InnoD…...
前端HTML CSS JS风格规范
本文代码规范来自HTML/CSS代码开发规范文档 文件命名规范 使用小写字母、数字和下划线组成文件名。 避免使用特殊字符和空格。 使用语义化的命名,能够清晰地表达出文件的功能或内容。 目录结构规范 使用约定俗成的目录结构,如:src/compon…...
为什么spring默认采用单例bean
概 述 熟悉 Spring开发的朋友都知道 Spring 提供了 5种 scope,分别是: singleton: 单例模式,当spring创建applicationContext容器的时候,spring会欲初始化所有的该作用域实例,加上lazy-init就可以避免预处理…...
Redisson分布式锁学习
之前工作中一直使用redis来实现分布式锁,但是最近项目使用了云弹性,机器会涉及到扩缩容,涉及到优雅停机的问题,普通的redis分布锁,一般使用时会设置锁的时间,但是如果在加锁期间 JVM异常重启等发生会导致分…...
Metabase:简单快捷的商业智能与数据分析工具 | 开源日报 No.61
moby/moby Stars: 66.8k License: Apache-2.0 Moby 是一个由 Docker 创建的开源项目,旨在实现和加速软件容器化。它提供了工具包组件的“乐高集”,可以将它们组装成基于容器的自定义系统的框架。组件包括容器生成工具、容器注册表、业务流程工具、运行时…...
【无标题】高流量大并发Linux TCP性能调优
最近在使用jmeter做压测,当jmeter的并发量高的时候发现jmeter服务器一直报错Cannot assign requested address, 查看了一下发现系统中存在大量处于TIME_WAIT状态的tcp端口 netstat -n | awk ‘/^tcp/ {S[$NF]} END {for(a in S) print a, S[a]}’ TIME_W…...
优雅的用户体验:微信小程序中的多步骤表单引导
前言 在微信小程序中,实现一个多步骤表单引导界面既可以提供清晰的任务指引,又可以增加用户体验的互动性。本文将探讨如何使用微信小程序的特性,构建一个流程引导界面,帮助用户一步步完成复杂任务。我们将从设计布局和样式开始&am…...
Kotlin中的委托、属性委托和延迟加载
委托模式是一种常用的设计模式,用于将某个对象的责任委托给另一个对象来处理。在Kotlin中,委托可以通过关键字by来实现,主要分为类委托和属性委托两种形式。此外,Kotlin还提供了延迟加载的功能,可以在需要时才进行初始…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
