当前位置: 首页 > news >正文

预测宝可梦武力值、分类宝可梦

regression case

股票预测
无人车看到的各种sensor
影像镜头看到马路上的东西作为输入,输出就是方向盘角度等等的操纵策略

scalar 标量
这个是热力图,相当于你的XYZ但是Z用颜色表示了

closed-form solution 闭合解
learning rate事先定好的数值
在linear regression上没有local optimal

一般性 泛化性
在这里插入图片描述
来自于random的数值,进化值某个方面受random值的影响
training error太小,training结果太好就可能出现overfitting的情况
博士根据常识改变model,删掉某个已知不影响的参数,可能还有其他比较关键有影响力的factor
参数越小越接近0,可以达到更平滑的效果,input改变,output不那么敏感,受影响程度不大
为什么喜欢平滑
用L2范数正则化,即岭回归
惩罚项

平滑,output对输入不敏感,输入被杂讯干扰,受到比较小的影响
我可以理解为岭回归有一定的抗噪声的能力吗
太平滑是一条水平线,也什么都干不成,太平滑结果又会变差
调参侠
bw都是常数,只有w受x影响,bias不影响平滑程度
这边就是adamW优化器不对bias做decay的原因,因为它就相对于正则化

classification分类

gaussian distribution 高斯分布==正态分布
硬解
在这里插入图片描述
强制按照regression来训练
以0为分界

大于0表示1,

太大超过1不行,远大于1的点是错误error
太小不行

分界线会考虑到偏离较远的点而偏离最合适的位置,让他们尽可能不变成距离分界线很远的错误的点
为了减小loss而不符常理,最小二乘的弊端
regression会惩罚那些太过正确,output太大的那些值

把每一类当作一个数字,但是数字之间有关系,类别之间不一定和数字之间的关系保持一致比如大小,是否相邻

binary classification
如何确定比较好的loss function
分类错误的次数
不能微分,无法用gradient decent
SVM,perceptron

在这里插入图片描述
贝叶斯定律
条件概率
在这里插入图片描述

计算某个x出现的机率,可以得知x的distributtion分布,就可以自己产生x

要把18种都分类正确,做不太出来
因为有些数值接近,但是却不是一个系的
每个宝可梦用个向量来表示,他的各种特征
水系里面挑一只出来是海龟的概率
是从高斯分布里面sample出来的,sample了79个,
不同的μ和Σ,分布的最高点是不一样的
在这里插入图片描述

这个完全是从统计学的角度来做分类了

可以理解为由样本生成高斯分布,再用海龟的数据去找到在高斯分布的位置

散点来推测密度函数:极大似然估计

每个高斯都有可能sample出所有的79个点,但是 sample出79个点的可能性是不同的
每个点被独立sample出来的,机率独立相乘
找出一个Gaussian,sample出这79个点的概率是最大的
likelihood最大
取微分以下找极值

最大似然估计!!
mean和variance通过最大似然分别求微分偏导得到

在这里插入图片描述

每个宝可梦用个向量来表示,他的各种特
热力图怎么做出来的,所有平面上的点全都代入一遍两个高斯么?

机器学习可以在高维空间处理问题,在七维空间上说不定 重叠在boundary上的样本点是分开的,分界线boundary更加的明显,每个宝可梦通过七个数字的向量来表示feature

covariance matrix 协方差矩阵!!!
不同的class可以share同一个covariance matrix
和input的feature size的平方成正比

feature size很大的时候,covariance matrix增长很快

如果把2个不同的Gaussian都给不同的covariance matrix ,model的参数可能太多了,参数一朵,variance(方差)就大,容易overfitting

为了减小参数,描述这两个类的feature分布的Gaussian,故意给他们相同的 covariance matrix
强制共用同一组 covariance matrix

在这里插入图片描述

为了减少model复杂度,共用一个协方差矩阵,使得概率密度分布的散布程度在class1和class2的分布上是一样的
这时就要同时基于c1和c2的样本概率去求两个分布各自的均值和共同的协方差矩阵

为减少模型复杂度,去共用一个协方差而不是共用一个均值,因为显然class1和class2在特征分布图上有不同的几何中心,而modify散布程度的自由性更大

bishop指的是Bishop - Pattern Recognition And Machine Learning

把原来两个Gaussian各自算的covariance matrix加权平均,得到强制要求用共同的Gaussian时对应的所得到的covariance matrix

就是一种加权平均的策略,权重根据个数来设定被,你可以换成均值之类的都可以的

均值比方差更能代表 两组 之间的 差异 方差主要是显示组内差异

使用共同的covariance matrix之后,the boundary变成了linear的
在这里插入图片描述

在高维空间中,分类的准确率大大提高了
人没办法知道机器在运作中的复杂缠绕的机理
没有什么原理,就是纯工程上觉得it just works
二维feature很少,人一看就知道,分界线和分类的好坏

个人理解共用协方差只是为了减小模型的复杂度,这只是在基于自己决定好model结构的基础上去优化一下model,从而获得model在分布上有更小的误差

在这里插入图片描述

在这里插入图片描述

结果是很trivial的

选别的几率模型
简单模型,参数比较少,bias小,variance大
复杂的模型对应相反

binary feature ,说使用Gaussian模型机率 分布产生的,不太合理
这时可能会选择用 Bernoulli distributions 伯努利分布
伯努利分布Ber-n,n=1,其实就是0-1分布

inner product:数量积,内积

相关文章:

预测宝可梦武力值、分类宝可梦

regression case 股票预测 无人车看到的各种sensor 影像镜头看到马路上的东西作为输入,输出就是方向盘角度等等的操纵策略 scalar 标量 这个是热力图,相当于你的XYZ但是Z用颜色表示了 closed-form solution 闭合解 learning rate事先定好的数值 在lin…...

Linux使用find命令查找文件

find命令 简介语法格式基本参数 参考实例根目录下文件名称的例子指定路径下特定类型的例子指定路径、文件类型特定文件名称的例子指定路径、文件类型特定文件大小的例子指定路径、文件类型 查找近期修改时间的例子指定路径、文件类型 查找空文件或目录的例子指定路径、文件类型…...

安卓使用android studio跨进程通信之AIDL

我写这篇文章不想从最基础的介绍开始,我直接上步骤吧. 1.创建服务端 1.1:创建服务端项目:我的as版本比较高,页面就是这样的 1.2:创建AIDL文件,右键项目,选中aidl aidl名字可以自定义也可以默认 basicTypes是自带的,可以删掉,也可以不删,然后把你自己所需的接口写上去 1.3:创建…...

RabbitMQ基础篇 笔记

RabbitMQ 余额支付 同步调用 一步一步的来,支付业务写完后,如果之后加需求,还需要增加代码,不符合开闭原则。 性能上也有问题,openfeign是同步调用,性能太差。 同步调用耦合太多。 同步的优势是可以立…...

实践小记—静态成员的使用注意(或许由此产生的不知名Bug)

序言 在实际生产过程中,为了便于调用,static修饰的成员会比较容易出现。 如果后期该变量并不会被修改,可以考虑使用。但如果后期需要被修改,使用该变量修饰符则需要慎重考虑。 尤其是在对硬件控制的实际生产中,更需…...

华为OD 身高体重排序(100分)【java】A卷+B卷

华为OD统一考试A卷B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载,请点击以下链接进入&#xff…...

在Word中,图片显示不全

在今天交作业的时候,发现了一个非常SB的事情,把图片复制过去显示不完全: 使用文心一言查看搜索了一下,发现可能是以下几种原因: 图片所在行的行高设置不正确。可以重新设置行高,具体步骤包括打开图片显示…...

C++数据结构X篇_20_选择排序

文章目录 1. 选择排序原理2. 选择排序原理核心代码3. 选择排序时间消耗 1. 选择排序原理 选择排序:相对于冒泡排序,减少了交换次数,下图展示了选择排序的原理,具体仍需要结合代码分析。 2. 选择排序原理核心代码 //选择排序 v…...

华为OD技术面试-最短距离矩阵(动态规划、广度优先)

背景 记录2023-10-21 晚华为OD三面的手撕代码题,当时没做出来,给面试官说了我的想法,评价:解法复杂了,只是简单的动态规范 或 广度优先算法,事后找资料记录实现方式。 题目 腐烂的橘子 问题描述&#xff…...

【代码规范】switch 块级的作用域问题

代码规范的一些事儿 问题 今日 Git 提交代码时,出现报错: error Unexpected lexical declaration in case block no-case-declarations 解决过程 我马上就去百度,就找到了这篇文章:解决 Unexpected lexical declaration in ca…...

PHP 基础/练习

练习 成绩定级 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>成绩定级脚本</title> </…...

TCP协议与UDP协议

UDP协议 UDP协议端的格式 16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度;如果校验和出错,就会直接丢弃; UDP的特点 UDP传输过程类似寄信 无连接 知道对端的IP和端口号就直接进行传输&#xff0c;不需要建立连接&#xff1b; 不可靠 没有任何安全机制&#xff0c…...

极智嘉(Geek+)柔性货箱到人拣选方案,助力Starlinks实现高效运营

近些年&#xff0c;电商业务席卷全球&#xff0c;一众企业蓬勃发展。比如沙特阿拉伯先进的物流与供应链解决方案供应商Starlinks的电子商务的销售额从6%增长到了23%。为满足日益增长的国际电商业务需求&#xff0c;以及订单交付时效性更高的要求&#xff0c;Starlinks与全球仓储…...

Hadoop3教程(三十一):(生产调优篇)异构存储

文章目录 &#xff08;157&#xff09;异构存储概述概述异构存储的shell操作 &#xff08;158&#xff09;异构存储案例实操参考文献 &#xff08;157&#xff09;异构存储概述 概述 异构存储&#xff0c;也叫做冷热数据分离。其中&#xff0c;经常使用的数据被叫做是热数据&…...

网络协议--UDP:用户数据报协议

11.1 引言 UDP是一个简单的面向数据报的运输层协议&#xff1a;进程的每个输出操作都正好产生一个UDP数据报&#xff0c;并组装成一份待发送的IP数据报。这与面向流字符的协议不同&#xff0c;如TCP&#xff0c;应用程序产生的全体数据与真正发送的单个IP数据报可能没有什么联…...

vscode摸鱼插件开发

不知道大家在写代码的时候&#xff0c;摸不摸鱼&#xff0c;是不是时不时得打开一下微博&#xff0c;看看今天发生了什么大事&#xff0c;又有谁塌房&#xff0c;而你没有及时赶上。 为此&#xff0c;我决定开发一个vscode插件&#xff0c;来查看微博热搜 插件名称&#xff1…...

音频录制和处理软件 Audio Hijack mac中文版说明

Audio Hijack mac是一款功能强大的音频录制和处理软件&#xff0c;它可以帮助用户从各种来源捕获和处理音频。 首先&#xff0c;Audio Hijack具有灵活的音频捕获功能。它支持从多个来源录制音频&#xff0c;包括麦克风、应用程序、网络流媒体、硬件设备等等。你可以选择捕获整个…...

寻找二叉树一个节点的后继节点

后继节点&#xff1a;中序遍历的后一个节点 普通二叉树&#xff1a;中序遍历得到一个list&#xff0c;时间复杂度O(n) 本题的二叉树&#xff1a;有父节点的指针&#xff0c;后继节点与原节点的距离为1&#xff0c;因此可以直接通过父节点找到下一个节点 优化&#xff1a;节点…...

如何能够获取到本行业的能力架构图去了解自己的能力缺陷与短板,从而能清晰的去弥补差距?

如何能够获取到本行业的能力架构图去了解自己的能力缺陷与短板&#xff0c;从而能清晰的去弥补差距&#xff1f; 获取并利用能力架构图&#xff08;Competency Model&#xff09;来了解自己在特定行业或职位中的能力缺陷和短板&#xff0c;并据此弥补差距&#xff0c;是一个非常…...

红队打靶:Misdirection打靶思路详解(vulnhub)

目录 写在开头 第一步&#xff1a;主机发现与端口扫描 第二步&#xff1a;Web渗透&#xff08;80端口&#xff0c;战术放弃&#xff09; 第三步&#xff1a;Web渗透&#xff08;8080端口&#xff09; 第四步&#xff1a;sudo bash提权 第五步&#xff1a;/etc/passwd利…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...