学习pytorch14 损失函数与反向传播
神经网络-损失函数与反向传播
- 官网
- 损失函数
- L1Loss MAE 平均
- MSELoss 平方差
- CROSSENTROPYLOSS 交叉熵损失
- 注意
- code
- 反向传播
- 在debug中的显示
- code
B站小土堆pytorch视频学习
官网
https://pytorch.org/docs/stable/nn.html#loss-functions

损失函数

L1Loss MAE 平均


import torchinput = torch.tensor([1, 2, 3], dtype=float)
# target = torch.tensor([1, 2, 5], dtype=float)
target = torch.tensor([[[[1, 2, 5]]]], dtype=float) # shape [1, 1, 1, 3]
input = torch.reshape(input, (1,1,1,3))
# target = torch.reshape(target, (1,1,1,3))
print(input.shape)
print(target.shape)loss1 = torch.nn.L1Loss()
loss2 = torch.nn.L1Loss(reduction="sum")
result1 = loss1(input, target)
print(result1) # tensor(0.6667, dtype=torch.float64)
result2 = loss2(input, target)
print(result2) # tensor(2., dtype=torch.float64)
MSELoss 平方差


import torchinput = torch.tensor([1, 2, 3], dtype=float)
# target = torch.tensor([1, 2, 5], dtype=float)
target = torch.tensor([[[[1, 2, 5]]]], dtype=float) # shape [1, 1, 1, 3]
input = torch.reshape(input, (1,1,1,3))
# target = torch.reshape(target, (1,1,1,3))
print(input.shape)
print(target.shape)loss_mse = torch.nn.MSELoss(reduction='mean')
result_mse = loss_mse(input, target)
print(result_mse) # tensor(1.3333, dtype=torch.float64)
loss_mse2 = torch.nn.MSELoss(reduction='sum')
result_mse2 = loss_mse2(input, target)
print(result_mse2) # tensor(4., dtype=torch.float64)
CROSSENTROPYLOSS 交叉熵损失
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss


在神经网络中,默认log是以e为底的,所以也可以写成ln


注意
- 根据需求选择对应的loss函数
- 注意loss函数的输入输出shape
code
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWritertest_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(test_set, batch_size=1)class MySeq(nn.Module):def __init__(self):super(MySeq, self).__init__()self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 64, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
myseq = MySeq()
print(myseq)
for data in dataloader:imgs, targets = dataprint(imgs.shape)output = myseq(imgs)result = loss(output, targets)print(result)
反向传播
在debug中的显示
显示在网络结构中,每一层的保护属性中,都有weight属性,梯度属性在weitht属性里面
先找模型结构 在找每一层 在找weight权重,梯度在weight权重里面

code
核心代码:result_loss.backward() # 要在最后获取 backward函数要挂在通过loss函数计算后的结果上。
# 模型定义、数据加载 同上个代码
for data in dataloader:imgs, targets = dataprint(imgs.shape)output = myseq(imgs)result_loss= loss(output, targets)result_loss.backward() # 要在最后获取print(result_loss)print(result_loss.grad)
相关文章:
学习pytorch14 损失函数与反向传播
神经网络-损失函数与反向传播 官网损失函数L1Loss MAE 平均MSELoss 平方差CROSSENTROPYLOSS 交叉熵损失注意code 反向传播在debug中的显示code B站小土堆pytorch视频学习 官网 https://pytorch.org/docs/stable/nn.html#loss-functions 损失函数 L1Loss MAE 平均 import to…...
windows平台下Qt Creator的下载与安装流程
下载 下载地址:https://download.qt.io/archive/ 下载界面 进入qt或者qtcreator都可以 版本选择 这里我选择进入qt进行下载,进入之后有多个版本可以选择。 注意:从Qt5.15版本开始,Qt公司不在提供开源离线安装程序,此…...
在 Python 中使用 Pillow 进行图像处理【3/4】
第三部分 一、腐蚀和膨胀 您可以查看名为 的图像文件dot_and_hole.jpg,您可以从本教程链接的存储库中下载该文件: 该二值图像的左侧显示黑色背景上的白点,而右侧显示纯白色部分中的黑洞。 侵蚀是从图像边界去除白色像素的过程。您可以通过使用…...
【Java】迭代器的next方法
Collection 集合的遍历 概述:Iteration:迭代器,集合的专用遍历方式 Iterator<E> Iterator() 返回在此 collection 的元素上进行迭代的迭代器boolean hasNext() 如果返回仍有元素可以迭代,则返回 trueE next() 返回迭代的下一…...
java智慧工地云平台源码,以物联网、移动互联网技术为基础,结合大数据、云计算等,实现工程管理绿色化、数字化、精细化、智能化的效果
智慧工地将更多人工智能、传感技术、虚拟现实等高科技技术植入到建筑、机械、人员穿戴设施、场地进出关口等各类物体中,围绕人、机、料、法、环等各方面关键因素,彻底改变传统建筑施工现场参建各方现场管理的交互方式、工作方式和管理模式,智…...
Unity 通过jar包形式接入讯飞星火SDK
最近工作上遇到了要接入gpt相关内容的需求,简单实现了一个安卓端接入讯飞星火的UnitySDK。 或者也可以接入WebSocket接口的。本文只讲安卓实现 我使用的Unity版本为2021.3.27f1c2 Android版本为4.2.2 1.下载SDK 登陆讯飞开放平台下载如图所示SDK 2.新建安卓工程…...
python轻量规则引擎rule-engine入门与应用实践
rule-engine是一种轻量级、可选类型的表达式语言,具有用于匹配任意 Python 对象的自定义语法,使用python语言开发。 规则引擎表达式用自己的语言编写,在 Python 中定义为字符串。其语法与 Python 最相似,但也受到 Ruby 的一些启发…...
栓Q八股文: C++ 14/17 新特性
C 14 翻译: 【翻译】C14的新特性简介-腾讯云开发者社区-腾讯云 C 17翻译:【翻译】C17的新特性简介-腾讯云开发者社区-腾讯云 原理:C Lambda 原理和编译器实现_clamda实现原理-CSDN博客...
虚拟世界游戏定制开发:创造独一无二的虚拟体验
在游戏开发领域,虚拟世界游戏定制开发是一项引人注目的任务,旨在满足客户独特的需求和愿景,创造一个完全个性化的虚拟世界游戏。这种类型的游戏开发需要专业的技能、深刻的游戏开发知识和密切的与客户合作,以确保游戏满足客户的期…...
Tomcat及jdk安装下载及环境配置(超超超详解)
我是看了两篇博客安装配置好的 jdk 最详细jdk安装以及配置环境(保姆级教程)_安装jdk需要配置环境变量吗-CSDN博客 tomcat Tomcat的下载安装与配置及常见问题处理【Win11】 - 鞠雨童 - 博客园 (cnblogs.com) 本篇文章是我解决了很多朋友的tomcat配置问题总…...
专业安卓实时投屏软件:极限投屏(QtScrcpy作者开发)使用说明
基本介绍 极限投屏是一款批量投屏管理安卓设备的软件,是QtScrcpy作者基于QtScrcpyCore开发,主要功能有: 设备投屏&控制:单个控制、批量控制分组管理wifi投屏adb shell快捷指令文件传输、apk安装 更多功能还在持续更新。 极…...
C++:二叉搜索树的原理和模拟实现
文章目录 二叉搜索树二叉搜索树的基本实现原理 二叉搜索树的实现非递归版本的实现递归版本的实现 二叉搜索树 二叉搜索树也叫做二叉排序树,可以是空树,也可以是满足一些要求的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点…...
学习视觉CV Transformer (2)--Transformer原理及代码分析
下面结合代码和原理进行深入分析Transformer原理。 2 Transformer深入分析 对于CV初学者来说,其实只需要理解Q K V 的含义和注意力机制的三个计算步骤: Q 和所有 K 计算相似性;对相似性采用 Softmax 转化为概率分布;将概率分布…...
【AI视野·今日CV 计算机视觉论文速览 第271期】Thu, 19 Oct 2023
AI视野今日CS.CV 计算机视觉论文速览 Thu, 19 Oct 2023 Totally 63 papers 👉上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Learning from Rich Semantics and Coarse Locations for Long-tailed Object Detection Authors Lingchen Meng, Xiyang D…...
GoLong的学习之路(四)语法之循环语句
书接上回,上回说到运算符,这次我们说一个编程语言中最重要的一点:流程控制,及循环语句 文章目录 循环语句if else(分支结构)if条件判断特殊写法 for(循环结构)for range(键值循环) switch casegoto(跳转到指定标签)break(跳出循环…...
【Lua语法】字符串
Lua语言中的字符串是不可变值。不能像在C语言中那样直接改变某个字符串中的某个字符,但是可以通过创建一个新字符串的方式来达到修改的目的 print(add2(1 , 2 ,15,3))a "no one"b string.gsub(a , "no" , "on1111")print(a) print…...
程序员节的由来
早在2006年的时候 我就发现了 1024KB1MB 然后恰好又是2的10次方 那时候我就把这一天定义为程序员节了 不过当时并没有太多的知名度。 所以严格意义来讲 距历史记载,程序员应该是由我(田尚滨/cagy)发明的。 As early as 2006 I found …...
订水商城H5实战教程-03用户协议
目录 1 创建页面2 为文本组件增加事件3 检查用户协议是否勾选最终效果 我们上一篇介绍了打开首页时弹出登录窗口的功能,本篇我们实现一下用户协议。 1 创建页面 功能是点击用户协议的时候打开具体的协议内容,需要先创建一个页面。打开自定义应用&#x…...
淘宝app商品详情源数据API接口(解决滑块问题)可高并发采集
通过API接口采集淘宝商品列表和app商品详情遇到滑块验证码的解决方法(带SKU和商品描述,支持高并发),主要是解决了高频情况下的阿里系滑块和必须要N多小号才能解决的反扒问题,以后都可以使用本方法: 大家都…...
xcode15一直显示正在连接iOS17真机问题解决
前言 更新xcode15之后,出现了各种报错问题,可谓是一路打怪啊,解决一个报错问题又来一个。没想到到了最后还能出现一个一直显示正在连接iOS17真机的问题 一直显示正在连接iOS17真机的问题 问题截图如下: 解决方法 1. 打开De…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
