当前位置: 首页 > news >正文

学习pytorch14 损失函数与反向传播

神经网络-损失函数与反向传播

  • 官网
  • 损失函数
    • L1Loss MAE 平均
    • MSELoss 平方差
    • CROSSENTROPYLOSS 交叉熵损失
      • 注意
      • code
  • 反向传播
    • 在debug中的显示
      • code

B站小土堆pytorch视频学习

官网

https://pytorch.org/docs/stable/nn.html#loss-functions
在这里插入图片描述

损失函数

在这里插入图片描述

L1Loss MAE 平均

在这里插入图片描述
在这里插入图片描述

import torchinput = torch.tensor([1, 2, 3], dtype=float)
# target = torch.tensor([1, 2, 5], dtype=float)
target = torch.tensor([[[[1, 2, 5]]]], dtype=float) # shape [1, 1, 1, 3]
input = torch.reshape(input, (1,1,1,3))
# target = torch.reshape(target, (1,1,1,3))
print(input.shape)
print(target.shape)loss1 = torch.nn.L1Loss()
loss2 = torch.nn.L1Loss(reduction="sum")
result1 = loss1(input, target)
print(result1) # tensor(0.6667, dtype=torch.float64)
result2 = loss2(input, target)
print(result2) # tensor(2., dtype=torch.float64)

MSELoss 平方差

在这里插入图片描述
在这里插入图片描述

import torchinput = torch.tensor([1, 2, 3], dtype=float)
# target = torch.tensor([1, 2, 5], dtype=float)
target = torch.tensor([[[[1, 2, 5]]]], dtype=float) # shape [1, 1, 1, 3]
input = torch.reshape(input, (1,1,1,3))
# target = torch.reshape(target, (1,1,1,3))
print(input.shape)
print(target.shape)loss_mse = torch.nn.MSELoss(reduction='mean')
result_mse = loss_mse(input, target)
print(result_mse) # tensor(1.3333, dtype=torch.float64)
loss_mse2 = torch.nn.MSELoss(reduction='sum')
result_mse2 = loss_mse2(input, target)
print(result_mse2)   # tensor(4., dtype=torch.float64)

CROSSENTROPYLOSS 交叉熵损失

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
在这里插入图片描述
在这里插入图片描述
在神经网络中,默认log是以e为底的,所以也可以写成ln
在这里插入图片描述
在这里插入图片描述

注意

  1. 根据需求选择对应的loss函数
  2. 注意loss函数的输入输出shape

code

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWritertest_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(test_set, batch_size=1)class MySeq(nn.Module):def __init__(self):super(MySeq, self).__init__()self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 64, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
myseq = MySeq()
print(myseq)
for data in dataloader:imgs, targets = dataprint(imgs.shape)output = myseq(imgs)result = loss(output, targets)print(result)

反向传播

在debug中的显示

显示在网络结构中,每一层的保护属性中,都有weight属性,梯度属性在weitht属性里面
先找模型结构 在找每一层 在找weight权重,梯度在weight权重里面

在这里插入图片描述

code

核心代码:result_loss.backward() # 要在最后获取 backward函数要挂在通过loss函数计算后的结果上。

# 模型定义、数据加载 同上个代码
for data in dataloader:imgs, targets = dataprint(imgs.shape)output = myseq(imgs)result_loss= loss(output, targets)result_loss.backward()  # 要在最后获取print(result_loss)print(result_loss.grad)

相关文章:

学习pytorch14 损失函数与反向传播

神经网络-损失函数与反向传播 官网损失函数L1Loss MAE 平均MSELoss 平方差CROSSENTROPYLOSS 交叉熵损失注意code 反向传播在debug中的显示code B站小土堆pytorch视频学习 官网 https://pytorch.org/docs/stable/nn.html#loss-functions 损失函数 L1Loss MAE 平均 import to…...

windows平台下Qt Creator的下载与安装流程

下载 下载地址:https://download.qt.io/archive/ 下载界面 进入qt或者qtcreator都可以 版本选择 这里我选择进入qt进行下载,进入之后有多个版本可以选择。 注意:从Qt5.15版本开始,Qt公司不在提供开源离线安装程序,此…...

在 Python 中使用 Pillow 进行图像处理【3/4】

第三部分 一、腐蚀和膨胀 您可以查看名为 的图像文件dot_and_hole.jpg,您可以从本教程链接的存储库中下载该文件: 该二值图像的左侧显示黑色背景上的白点,而右侧显示纯白色部分中的黑洞。 侵蚀是从图像边界去除白色像素的过程。您可以通过使用…...

【Java】迭代器的next方法

Collection 集合的遍历 概述&#xff1a;Iteration&#xff1a;迭代器&#xff0c;集合的专用遍历方式 Iterator<E> Iterator() 返回在此 collection 的元素上进行迭代的迭代器boolean hasNext() 如果返回仍有元素可以迭代&#xff0c;则返回 trueE next() 返回迭代的下一…...

java智慧工地云平台源码,以物联网、移动互联网技术为基础,结合大数据、云计算等,实现工程管理绿色化、数字化、精细化、智能化的效果

智慧工地将更多人工智能、传感技术、虚拟现实等高科技技术植入到建筑、机械、人员穿戴设施、场地进出关口等各类物体中&#xff0c;围绕人、机、料、法、环等各方面关键因素&#xff0c;彻底改变传统建筑施工现场参建各方现场管理的交互方式、工作方式和管理模式&#xff0c;智…...

Unity 通过jar包形式接入讯飞星火SDK

最近工作上遇到了要接入gpt相关内容的需求&#xff0c;简单实现了一个安卓端接入讯飞星火的UnitySDK。 或者也可以接入WebSocket接口的。本文只讲安卓实现 我使用的Unity版本为2021.3.27f1c2 Android版本为4.2.2 1.下载SDK 登陆讯飞开放平台下载如图所示SDK 2.新建安卓工程…...

python轻量规则引擎rule-engine入门与应用实践

rule-engine是一种轻量级、可选类型的表达式语言&#xff0c;具有用于匹配任意 Python 对象的自定义语法&#xff0c;使用python语言开发。 规则引擎表达式用自己的语言编写&#xff0c;在 Python 中定义为字符串。其语法与 Python 最相似&#xff0c;但也受到 Ruby 的一些启发…...

栓Q八股文: C++ 14/17 新特性

C 14 翻译&#xff1a; 【翻译】C14的新特性简介-腾讯云开发者社区-腾讯云 C 17翻译&#xff1a;【翻译】C17的新特性简介-腾讯云开发者社区-腾讯云 原理&#xff1a;C Lambda 原理和编译器实现_clamda实现原理-CSDN博客...

虚拟世界游戏定制开发:创造独一无二的虚拟体验

在游戏开发领域&#xff0c;虚拟世界游戏定制开发是一项引人注目的任务&#xff0c;旨在满足客户独特的需求和愿景&#xff0c;创造一个完全个性化的虚拟世界游戏。这种类型的游戏开发需要专业的技能、深刻的游戏开发知识和密切的与客户合作&#xff0c;以确保游戏满足客户的期…...

Tomcat及jdk安装下载及环境配置(超超超详解)

我是看了两篇博客安装配置好的 jdk 最详细jdk安装以及配置环境&#xff08;保姆级教程&#xff09;_安装jdk需要配置环境变量吗-CSDN博客 tomcat Tomcat的下载安装与配置及常见问题处理【Win11】 - 鞠雨童 - 博客园 (cnblogs.com) 本篇文章是我解决了很多朋友的tomcat配置问题总…...

专业安卓实时投屏软件:极限投屏(QtScrcpy作者开发)使用说明

基本介绍 极限投屏是一款批量投屏管理安卓设备的软件&#xff0c;是QtScrcpy作者基于QtScrcpyCore开发&#xff0c;主要功能有&#xff1a; 设备投屏&控制&#xff1a;单个控制、批量控制分组管理wifi投屏adb shell快捷指令文件传输、apk安装 更多功能还在持续更新。 极…...

C++:二叉搜索树的原理和模拟实现

文章目录 二叉搜索树二叉搜索树的基本实现原理 二叉搜索树的实现非递归版本的实现递归版本的实现 二叉搜索树 二叉搜索树也叫做二叉排序树&#xff0c;可以是空树&#xff0c;也可以是满足一些要求的二叉树 若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点…...

学习视觉CV Transformer (2)--Transformer原理及代码分析

下面结合代码和原理进行深入分析Transformer原理。 2 Transformer深入分析 对于CV初学者来说&#xff0c;其实只需要理解Q K V 的含义和注意力机制的三个计算步骤&#xff1a; Q 和所有 K 计算相似性&#xff1b;对相似性采用 Softmax 转化为概率分布&#xff1b;将概率分布…...

【AI视野·今日CV 计算机视觉论文速览 第271期】Thu, 19 Oct 2023

AI视野今日CS.CV 计算机视觉论文速览 Thu, 19 Oct 2023 Totally 63 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Learning from Rich Semantics and Coarse Locations for Long-tailed Object Detection Authors Lingchen Meng, Xiyang D…...

GoLong的学习之路(四)语法之循环语句

书接上回&#xff0c;上回说到运算符&#xff0c;这次我们说一个编程语言中最重要的一点&#xff1a;流程控制&#xff0c;及循环语句 文章目录 循环语句if else(分支结构)if条件判断特殊写法 for(循环结构)for range(键值循环) switch casegoto(跳转到指定标签)break(跳出循环…...

【Lua语法】字符串

Lua语言中的字符串是不可变值。不能像在C语言中那样直接改变某个字符串中的某个字符&#xff0c;但是可以通过创建一个新字符串的方式来达到修改的目的 print(add2(1 , 2 ,15,3))a "no one"b string.gsub(a , "no" , "on1111")print(a) print…...

程序员节的由来

早在2006年的时候 我就发现了 1024KB1MB 然后恰好又是2的10次方 那时候我就把这一天定义为程序员节了 不过当时并没有太多的知名度。 所以严格意义来讲 距历史记载&#xff0c;程序员应该是由我&#xff08;田尚滨/cagy&#xff09;发明的。 As early as 2006 I found …...

订水商城H5实战教程-03用户协议

目录 1 创建页面2 为文本组件增加事件3 检查用户协议是否勾选最终效果 我们上一篇介绍了打开首页时弹出登录窗口的功能&#xff0c;本篇我们实现一下用户协议。 1 创建页面 功能是点击用户协议的时候打开具体的协议内容&#xff0c;需要先创建一个页面。打开自定义应用&#x…...

淘宝app商品详情源数据API接口(解决滑块问题)可高并发采集

通过API接口采集淘宝商品列表和app商品详情遇到滑块验证码的解决方法&#xff08;带SKU和商品描述&#xff0c;支持高并发&#xff09;&#xff0c;主要是解决了高频情况下的阿里系滑块和必须要N多小号才能解决的反扒问题&#xff0c;以后都可以使用本方法&#xff1a; 大家都…...

xcode15一直显示正在连接iOS17真机问题解决

前言 更新xcode15之后&#xff0c;出现了各种报错问题&#xff0c;可谓是一路打怪啊&#xff0c;解决一个报错问题又来一个。没想到到了最后还能出现一个一直显示正在连接iOS17真机的问题 一直显示正在连接iOS17真机的问题 问题截图如下&#xff1a; 解决方法 1. 打开De…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...