【图像配准】Canny边缘检测+模板配准红外可见光双路数据
研究目的
最近在做无人机遥感红外和可见光双路数据配准,由于红外相机视野范围较小,因此配准的目的主要是在可见光的视野范围内,裁剪出红外图像对应的部分,同时,保持可见光的高分辨率不变。
本文思路
本文尝试使用Canny边缘检测提取红外和可见光的边缘特征,然后使用模板匹配的方式去进行配准。由于红外图像和可见光图像的分辨率并不相同,因此需要对可见光不断进行下采样,以接近红外图像的分辨率。
总体看来,使用传统方法做跨模态配准效果有限,主要是由于红外图像特征较少,不过在光照充足和建筑特征明显的情况下,有一定效果,后续会采用基于深度学习的配准方法,相关图片由于项目原因不对外公布,这里对代码进行归档。
实验代码
import numpy as np
import argparse
import cv2
import osif __name__ == '__main__':ap = argparse.ArgumentParser()ap.add_argument("-i", "--image", required=False, default=r"lr/Infrared.jpg", help="红外图像路径")ap.add_argument("-v", "--visualize", required=False, default=r"rgb/Zoom.jpg", help="可见光图像路径")ap.add_argument("-o", "--output", required=False, default=r"output", help="输出文件夹路径")args = vars(ap.parse_args())# 读取红外图像/灰度化/边缘检测template = cv2.imread(args["image"])template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)template = cv2.Canny(template, 50, 200)(tH, tW) = template.shape[:2]# 读取可见光图像image = cv2.imread(args["visualize"])# image = cv2.resize(image, (tW, tH))gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)found = Nonefor scale in np.linspace(0.2, 1.0, 20)[::-1]:# 多尺度缩小可见光图像resized = cv2.resize(gray, (int(gray.shape[1] * scale), int(gray.shape[0] * scale)))r = gray.shape[1] / float(resized.shape[1])# 若缩小的尺度小于红外图像尺寸,跳出循环if resized.shape[0] < tH or resized.shape[1] < tW:break# 对缩小之后的图像进行边缘检测edged = cv2.Canny(resized, 50, 200)'''cv2.matchTemplate 模板匹配:param 检测图像 模板 模板匹配方法:returns 相似度结果矩阵:(宽: image.shape[1]-template.shape[1]+1; 高:image.shape[0]-template.shape[0]+1)'''result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)# print("edged_shape:{}".format(edged.shape)) # (3888, 5184)# print("template_shape:{}".format(template.shape)) # (512, 640)# print("result_shape:{}".format(result.shape)) # (3377, 4545)# 查找模板中最大相似度值和位置_, maxVal, _, maxLoc = cv2.minMaxLoc(result)# 可选:查看匹配图范围# clone = np.dstack([edged, edged, edged])# clone = edged# cv2.rectangle(clone, (maxLoc[0], maxLoc[1]), (maxLoc[0] + tW, maxLoc[1] + tH), (0, 0, 255), 2)# cv2.imwrite(os.path.join(args["output"], "Visualize", "visualize.jpg"), clone)# 若在裁剪区域找到相似度更高的匹配点,更新foundif found is None or maxVal > found[0]:found = (maxVal, maxLoc, r)# 得到匹配度最高的矩阵框坐标_, maxLoc, r = found(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))# cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)crop_img = image[startY:endY, startX:endX]# cv2.imshow("Image", image)# cv2.imshow("Crop Image", crop_img)# cv2.waitKey(0)thermal_image = cv2.imread(args["image"], cv2.IMREAD_COLOR)# cropping out the matched part of the thermal imagecrop_img = cv2.resize(crop_img, (thermal_image.shape[1], thermal_image.shape[0]))# 创建输出文件夹存储裁剪后的可见光影像if not os.path.exists(os.path.join(args["output"], "process")):os.mkdir(os.path.join(args["output"], "process"))# 保存图片cv2.imwrite(os.path.join(args["output"], "process", os.path.basename(args["visualize"])), crop_img)# 创建对比图像final = np.concatenate((crop_img, thermal_image), axis=1)if not os.path.exists(os.path.join(args["output"], "results")):os.mkdir(os.path.join(args["output"], "results"))cv2.imwrite(os.path.join(args["output"], "results", os.path.basename(args["visualize"])), final)
相关文章:
【图像配准】Canny边缘检测+模板配准红外可见光双路数据
研究目的 最近在做无人机遥感红外和可见光双路数据配准,由于红外相机视野范围较小,因此配准的目的主要是在可见光的视野范围内,裁剪出红外图像对应的部分,同时,保持可见光的高分辨率不变。 本文思路 本文尝试使用Ca…...
关于单机流程编排技术——docker compose安装使用的问题
最近在学习docker相关的东西,当我在docker上部署了一个nest应用,其中该应用中依赖了一个基于mysql镜像的容器,一个基于redis镜像的容器。那我,当我进行部署上线时,在启动nest容器时,必须保证redis容器和mys…...

Google Chrome的新“IP保护”功能将隐藏用户的IP地址
导语:在保护用户隐私方面,Google Chrome正在测试一项名为“IP保护”的新功能。通过使用代理服务器掩盖用户的IP地址,这项功能能够增强用户的隐私保护。在意识到IP地址可能被用于秘密追踪后,Google希望在确保用户隐私的同时&#x…...

做机器视觉工程师,苏州德创能不能去工作?
每一家公司都有自身特点,同时也每一家都有自身的bug。 苏州德创作为美国康耐视Cognex产品在华东最大的代理商,也是康耐视外包团队。那么苏州德创有哪些业务构成,业务的构成也是其招聘的主要人员的方向。 设备视觉供应商,如卓越&…...
交换机基础(二):VLAN 基础知识
一、VLAN 基础知识 虚拟局域网 (Virtual Local Area Network,VLAN) 是一种将局域网设 备从逻辑上划分成一个个网段,从而实现虚拟工作组的数据交换技术。 这一技术主要应用于3层交换机和路由器中,但主流应用还是在3层交换机中。 VLAN 是基于物理网络上构建…...
一个基于Vue3搭建的低代码数据可视化开发平台
JNPF是一个Vue3搭建的低代码数据可视化开发平台,将图表或页面元素封装为基础组件,无需编写代码即可完成业务需求。 在JNPF中,至少包含表单建模、流程设计、报表可视化、代码生成器、系统管理、前端UI等组件,这种情况下我们避免了重…...
经验风险最小化与结构风险最小化:优化机器学习模型的两种方法
随着大数据时代的到来,机器学习在各个领域中的应用越来越广泛。然而,在构建机器学习模型时,我们面临着两个主要的挑战:经验风险最小化和结构风险最小化。本文将深入探讨这两种方法,并分析它们在优化机器学习模型中的作…...
Java泛型中的问号是什么意思
通配符概念 因为 List 是泛型类,为了 表示各种泛型 List 的父类,可以使用类型通配符,类型通配符使用问号(?)表示,将一个问号当做类型元素传递个 List,可以表示为 List<?>,意思是 元素类型未知的 List…...

粤嵌实训医疗项目day02(Vue + SpringBoot)
目录 一、创建vue项目并运行 二、vue-cli中的路由使用 三、element-ui框架、实现页面布局以及vue-路由 四、前端登录页面 五、user登录后端接口完善【后端】 六、user登录前端-请求工具-请求发起【前端】 七、请求的跨域-访问策略 八、完善项目的页面布局、导航菜单以及…...

又是一年1024程序员日
程序员节是每年的10月24日,这是一个特殊的节日,旨在庆祝和表彰程序员们对科技和社会的贡献。作为技术领域的从业者,程序员们在现代社会中扮演着重要的角色,他们致力于编写、测试和维护软件代码,为我们的生活带来了无数…...

acme.sh签发和部署ZeroSSL泛域名证书
大家好,我叫徐锦桐,个人博客地址为www.xujintong.com。平时记录一下学习计算机过程中获取的知识,还有日常折腾的经验,欢迎大家访问。 介绍 acme.sh 是个开源的shell证书生成脚本,他可以自动生成Let’s Encrypt 的证书…...

Calibre拾遗:FDI (Foreign Database Interface)系统简介
Calibre是强大的GDS处理工具,包括查看,验证,分析等操作,操作由浅入深,除过手动编辑GDS的不是很灵活外,其他各种命令和操作策略,都是远(遥)远(遥)走…...

记一次渗透测试事件
一、漏洞发现 拿到登录的接口,丢到sqlmap里面跑一把,发现延时注入 进一步查询,发现是sa权限,直接os-shell whomai查询发现是管理员权限 os-shell执行命令太慢了,直接进行nc 反弹 执行base64 加密后的powershell命令&…...

AIGC笔记--基于DDPM实现图片生成
目录 1--扩散模型 2--训练过程 3--损失函数 4--生成过程 5--参考 1--扩散模型 完整代码:ljf69/DDPM 扩散模型包含两个过程,前向扩散过程和反向生成过程。 前向扩散过程对一张图像逐渐添加高斯噪声,直至图像变为随机噪声。 反向生成过程…...

三十七、【进阶】SQL的explain
1、explain 2、基础使用 在使用explain关键字时,只需要在所执行语句前加上explain即可 mysql> explain select * from stu where id3; ---------------------------------------------------------------------------------------------------------- | id | s…...
【Python】取火柴小游戏(巴什博弈)
火柴游戏:Python编程示例 当我们想要玩一个简单而有趣的游戏,同时又想锻炼自己的编程技能时,一个经典的选择就是火柴游戏。这个游戏的规则很简单:有一堆火柴,每次可以拿走1到6根,两名玩家轮流取火柴&#…...

030-第三代软件开发-密码输入框
第三代软件开发-密码输入框 文章目录 第三代软件开发-密码输入框项目介绍密码输入框总结一下 关键字: Qt、 Qml、 echoMode、 TextInput、 Image 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML(Qt Meta-Object Language…...

mysql读取文件
环境地址:phpMyAdmin LOAD DATA INFILE 任意文件读取漏洞 | VULNSPY 参考文章: mysql任意文件读取漏洞学习_BerL1n的博客-CSDN博客 从一道ctf题学习mysql任意文件读取漏洞 - 安全客,安全资讯平台 MYSQL 任意文件读取 小组CTF出题感想 - …...
CentOS(5)——rpm包和源码包区别
目录 一、简介 二、区别 ①包名称 ②概念 ③优缺点 ④安装位置的区别 ⑤安装位置不同带来的影响 ⑥卸载方式的不同 一、简介 最近在公司内网离线升级Git时,遇见两个概念,分别是使用rpm包安装git,另一个这是编译源码包安装git&#x…...
Golang 实现对配置文件加密
引言 在实际的应用中,配置文件通常包含了一些敏感的信息,如数据库密码、API密钥等。为了保护这些敏感信息不被恶意获取,我们可以对配置文件进行加密。本文将介绍如何使用Go语言实现对配置文件的加密。 场景 在这个场景中,我们将…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...