Quirks(怪癖)模式是什么?它和 Standards(标准)模式有什么区别?
目录
前言:
用法:
代码:
Quirks模式示例:
Standards模式示例:
理解:
Quirks模式:
Standards模式:
高质量讨论:
前言:
"Quirks模式"和"Standards模式"是与HTML文档渲染模式相关的两种模式。它们影响着浏览器如何解释和渲染HTML和CSS。理解它们之间的区别对于前端开发者和网页设计师来说是至关重要的。本文将深入讨论Quirks模式和Standards模式的区别,以及它们的用途和影响。
用法:
要理解Quirks模式和Standards模式,首先需要知道它们是如何触发的。这两种模式的触发方式是通过文档类型(DOCTYPE)声明来确定的。
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>示例文档</title></head><body><!-- 页面内容 --></body>
</html>
<!DOCTYPE>
声明指定了文档的类型和版本。不同类型的文档声明会触发不同的渲染模式。
代码:
Quirks模式示例:
如果没有指定文档类型或使用了旧的文档类型,浏览器将进入Quirks模式。这是一种兼容性模式,用于支持旧的HTML文档。
<!-- 没有指定文档类型,将触发Quirks模式 -->
<html><head><title>Quirks模式示例</title></head><body><!-- 页面内容 --></body>
</html>
Standards模式示例:
如果使用了现代的文档类型声明,浏览器将进入Standards模式。这是一种更严格的模式,用于支持HTML5和现代Web标准。
<!DOCTYPE html>
<html><head><title>Standards模式示例</title></head><body><!-- 页面内容 --></body>
</html>
理解:
Quirks模式:
Quirks模式是一种宽松的渲染模式,它是为了与旧版本的HTML文档兼容而设计的。在Quirks模式下,浏览器的行为可能会有一些怪异之处,与标准模式不同。以下是Quirks模式的一些特点:
-
怪癖盒模型: 在Quirks模式下,浏览器使用怪癖盒模型来计算元素的宽度和高度。这意味着边距和填充会影响元素的实际大小。
-
浮动和定位: 浮动和定位的行为在Quirks模式下与标准模式不同,可能导致页面布局问题。
-
垂直对齐: 垂直对齐可能不一致,可能需要额外的样式来修复。
-
默认字体: 浏览器可能使用不同的默认字体,导致文本呈现不同。
Standards模式:
Standards模式是一种更严格的渲染模式,它遵循HTML5和现代Web标准。在Standards模式下,浏览器按照标准规范解释和渲染HTML和CSS。以下是Standards模式的一些特点:
-
标准盒模型: 在Standards模式下,浏览器使用标准盒模型来计算元素的宽度和高度,边距和填充不会影响实际大小。
-
一致的浮动和定位: 浮动和定位的行为在Standards模式下更一致,更容易控制。
-
一致的垂直对齐: 垂直对齐行为更一致,不太可能出现不一致的问题。
-
一致的字体: 浏览器使用相同的默认字体,文本呈现更一致。
高质量讨论:
一篇高质量的文章应该深入讨论Quirks模式和Standards模式的区别,以及它们如何影响网页的渲染和布局。文章还应提供如何选择正确模式的实际建议,以及如何避免进入Quirks模式。此外,文章还应包括浏览器的兼容性和不同文档类型声明的示例。
讨论不同的HTML版本和文档类型声明对模式的影响也是一篇高质量文章的一部分。还可以讨论Quirks模式和Standards模式的历史和发展,以帮助读者更好地理解它们的来龙去脉。
最后,一篇高质量文章应该包括示例代码、图表和图像,以帮助读者更好地理解Quirks模式和Standards模式的区别。这将使文章更具吸引力和可理解性。
相关文章:

Quirks(怪癖)模式是什么?它和 Standards(标准)模式有什么区别?
目录 前言: 用法: 代码: Quirks模式示例: Standards模式示例: 理解: Quirks模式: Standards模式: 高质量讨论: 前言: "Quirks模式"和"Standards模式"是与HTML文档渲染模式相关的两种模式。它们影响着浏览器如何解释和渲染HT…...

自然语言处理---Transformer模型
Transformer概述 相比LSTM和GRU模型,Transformer模型有两个显著的优势: Transformer能够利用分布式GPU进行并行训练,提升模型训练效率。 在分析预测更长的文本时,捕捉间隔较长的语义关联效果更好。 Transformer模型的作用 基于seq…...

动画系统的前世今生(一)
掐指一算,五年没更新过我的CSDN账号啦,方向也从人工智能变成了计算机图形学,当然也依旧会关注AI的发展,之前在知乎上写了一些文章[传送门],后续也会逐渐同步到CSDN上~ 这个系列将包含五篇文章,内…...

11 结构型模式- 代理模式
结构性模式一共包括七种: 代理模式、桥接模式、装饰者模式、适配器模式、门面(外观)模式、组合模式、和享元模式。 1 代理模式介绍 软件开发中的代理: 代理模式中引入了一个新的代理对象,代理对象在客户端对象和目标对象之间起到了中介的作用,它去掉客…...

Unity--用户界面
目录 “使用工具栏”: “层次结构”窗口: 层次结构窗口 制作子GameObject “游戏”视图: “场景视图“: ”项目窗口“: 项目窗口工具栏: "Inspector" 窗口: Inspector 游戏…...

BUUCTF 乌镇峰会种图 1
BUUCTF:https://buuoj.cn/challenges 题目描述: 乌镇互联网大会召开了,各国巨头汇聚一堂,他们的照片里隐藏着什么信息呢?(答案格式:flag{答案},只需提交答案࿰…...

Runner GoUI自动化测试发布
构建自动化测试体系是当下每个项目团队愿意去做的,自动化测试减少重复操作节省人力成本。 RunnerGo UI自动化平台 RunnerGo提供从API管理到API性能再到可视化的API自动化、UI自动化测试功能模块,覆盖了整个产品测试周期。 RunnerGo UI自动化基于Selen…...

【Gensim概念】03/3 NLP玩转 word2vec
第三部分 对象函数 八 word2vec对象函数 该对象本质上包含单词和嵌入之间的映射。训练后,可以直接使用它以各种方式查询这些嵌入。有关示例,请参阅模块级别文档字符串。 类型 KeyedVectors 1) add_lifecycle_event(event_name, log_level2…...

【网络协议】聊聊网络路由相关算法
如何配置路由 路由器是一台网络设备,多张网卡,当一个入口的网络包到达路由器时,会根据本地的信息库决定如何正确的转发流量,通常称为路由表 路由表主要包含如下 核心思想是根据目的 IP 地址来配置路由 目的网络:要去…...

Python 深度学习入门之CNN
CNN 前言一、CNN简介1、简介2、结构 二、CNN简介1、输出层2、卷积层3、池化层4、全连接层5、输出层 前言 1024快乐!1024快乐!今天开新坑,学点深度学习相关的,说下比较火的CNN。 一、CNN简介 1、简介 CNN的全称是Convolutiona…...

国产开发板上打造开源ThingsBoard工业网关--基于米尔芯驰MYD-JD9X开发板
本篇测评由面包板论坛的优秀测评者“JerryZhen”提供。 本文将介绍基于米尔电子MYD-JD9X开发板打造成开源的Thingsboard网关。 Thingsboard网关是一个开源的软件网关,采用python作为开发语言,可以部署在任何支持 python 运行环境的主机上,灵…...

英语——语法——从句——名词性从句——笔记
文章目录 名词性从句一、定义二、分类(一)宾语从句(二)主语从句(三)C同位语从句(四)D表语从句 名词性从句 一、句子成分 简而言之,构成一个句子的成分(或要素…...
PROSTATEx-2 上前列腺癌的 3D CNN 分类
内容 本文介绍了在多参数 MRI 序列上使用 3D CNN 对前列腺癌进行显着性或不显着性分类。内容如下: 数据集描述Dicom 到 Nifti 文件格式的转换不同 MRI 序列的联合配准...

npm ERR! node-sass@6.0.1 postinstall: `node scripts/build.js`
1.遇到的问题 vue npm install提示以下错误 2.首次尝试方法 尝试用下面的方式重新安装弄得-saas,结果不起作用 。 npm config set sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass npm install node-sass 这时考虑降级node版本,node.js从…...
3D学习论文参考-ACCURATE EYE PUPIL LOCALIZATION USING HETEROGENEOUS CNN MODELS
以下是该文档的关键内容: 该论文提出了一种使用异构卷积神经网络(CNN)模型的精确眼睛瞳孔定位算法。这种算法可以抵抗光照、图像分辨率和眼镜佩戴等干扰条件,同时具有高准确性。该算法由两部分组成:一是找到近似眼睛区…...

迁移conda环境后,非root用户执行pip命令和jupyter命令报错/bad interpreter: Permission denied
移动conda环境,在移动的环境执行pip和jupyter 报错-bash: /data/home/用户名/anaconda3/envs/llm/bin/pip: /root/anaconda3/envs/llm/bin/python: bad interpreter: Permission denied 报错信息 一、原因 原因是当前的这个data/home/用户名/anaconda3/envs/环境名…...

虚拟机使用linux常用问题(虚拟机操作系统:ubuntu 22.04LTS)
1.虚拟机连接外网 ubuntu解决网络连接的解决方案 CentOS7联网问题解决 明明连接好了但是没有网络的情况 2.虚拟机磁盘扩容 相关博客 利用gparted工具时,直接将unallocated空间的前一个位置的磁盘resize,将unallocated的空间全部覆盖 3.虚拟机与本机共享文件 安装vmtools 设…...

编译原理-词法分析器
文章目录 对于词法分析器的要求概念词法分析器的功能和输出形式 词法分析器的设计词法分析器的结构单词符号的识别:超前搜索状态转换图 正规表达式和有限自动机正规式和正规集确定有限自动机(DFA)非确定有限自动机(NFA)…...

Kafka与MySQL的组合使用
根据上面给出的student表,编写Python程序完成如下操作: (1)读取student表的数据内容,将其转为JSON格式,发送给Kafka; 创建Student表的SQL语句如下: create table student( sno ch…...

2018年亚太杯APMCM数学建模大赛A题老年人平衡能力的实时训练模型求解全过程文档及程序
2018年亚太杯APMCM数学建模大赛 A题 老年人平衡能力的实时训练模型 原题再现 跌倒在老年人中很常见。跌倒可能会导致老年人出现许多并发症,因为他们的康复能力通常较差,因此副作用可能会使人衰弱,从而加速身体衰竭。此外,对跌倒…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...