当前位置: 首页 > news >正文

Spark项目实战-卡口流量统计

一、卡口介绍

在这里插入图片描述
卡口摄像头正对车道安装,拍摄正面照片。
功能:抓拍正面特征

这种摄像头多安装在国道、省道、高速公路的路段上、或者城区和郊区交接的主要路口,用来抓拍超速、进出城区车辆等行为。它进行的是车辆正面抓拍,可以清晰地看到驾驶员及前台乘客的面容及行为。有一些则是专门摄像车的尾部,所以当车开过此类测速摄像头后不要马上提速,建议至少要跑出500米后再提速。这就是有人认为的没有超速为什么也照样被拍的原因。此类摄像头应该是集成照明设备。

在这里插入图片描述

在这里插入图片描述

卡口:三车道、三个摄像头共同组成卡口A

二、表介绍

monitor_flow_action

日期卡口ID摄像头编号车牌号拍摄时间车速道路ID区域ID
datemonitor_idcamera_idcaraction_timespeedroad_idarea_id
2018-11-05000533745京C601592018-11-05 20:43:471983604

monitor_camera_info

卡扣号摄像头编号
monitor_idcamera_id
000680522
000629268

areaId2AreaInfoRDD

area_idarea_name
区域ID区域Name

tmp_car_flow_basic
= areaId2AreaInfoRDD + monitor_flow_action

卡口ID车牌号道路ID区域ID区域Name
monitor_idcarroad_idarea_idarea_name
0005京C601593604

tmp_area_road_flow_count

area_nameroad_idcar_countmonitor_infos
区域ID道路ID车count详情
0436500006=20|0002=30

areaTop3Road

area_nameroad_idcar_countmonitor_infosflow_level
区域ID道路ID车count详情流量等级
0436500006=20|0002=30D

三、分析需求

3.1 卡口正常数、异常数

在这里插入图片描述

统计异常摄像头的思路:流量表 rightJoin 摄像头表,过滤流量表为空的

//------------------------------统计卡口摄像头通过的车辆的合计----------------------------
//| 2023-10-24 | 0005 | 33745 | 京C60159 | 2018-11-05 20:43:47 | 198 | 36 | 04 |
val flowDF:DataFrame =  sparkSession.sql("select * from monitor_flow_action where data = '2023-10-24' ")//((0005:33745),1)
val mcRdd: RDD[(String, Int)] = flowDF.map(e => Tuple2((e.getString(1) + ":" + e.getString(2)),1)).rdd//((0005:33745),99)
val flowRdd: RDD[(String, Int)] = mcRdd.reduceByKey(_+_)//------------------------------统计卡口所有的摄像头----------------------------
//| 0006 | 29268 |
val cameraDF:DataFrame = sparkSession.sql("select * from monitor_camera_info")//((0006,29268),1)
val cameraRdd: RDD[(String, Int)] = cameraDF.map(e => ((e.getString(0) + ":" + e.getString(1)),1)).rdd//------------------------------合并车流量和摄像头RDD----------------------------
val allRDD: RDD[(String, (Option[Int], Int))] = flowRdd.rightOuterJoin(cameraRdd).filter(e => e._2._1.isEmpty)

在这里插入图片描述

3.2 camera 正常数、异常数、详情

    //---------------------开始操作车流量信息,假设任务编号为1 日期参数为今天val flowInfo: RDD[(String, String)] = sparkSession.sql("select * from monitor_flow_action where date = '2021-08-23' ").rdd.map(row => (row.getString(1), row)).groupByKey().map(ele => {val monitorId: String = ele._1val cameraIdSet = new mutable.HashSet[String]()ele._2.foreach(row => cameraIdSet.add(row.getString(2)))//拼接字符串val info: String = Constants.FIELD_MONITOR_ID + "=" + monitorId + "|" + Constants.FIELD_AREA_ID + "=浦东新区|" + Constants.FIELD_CAMERA_IDS + "=" + cameraIdSet.mkString("-") + "|" + Constants.FIELD_CAMERA_COUNT + "=" + cameraIdSet.size + "|" + Constants.FIELD_CAR_COUNT + "=" + ele._2.size//返回结果(monitorId, info)})//-----------------------开始操作摄像头数据val monitorInfo: RDD[(String, String)] = sparkSession.sql("select * from monitor_camera_info").rdd.map(row => (row.getString(0), row.getString(1))).groupByKey().map(ele => {val monitorId: String = ele._1//拼接字符串val info: String = Constants.FIELD_CAMERA_IDS + "=" + ele._2.toList.mkString("-") + "|" + Constants.FIELD_CAMERA_COUNT + "=" + ele._2.size//返回结果(monitorId, info)//-----------------------将数据Join到一起monitorInfo.leftOuterJoin(flowInfo).foreach(println)})

在这里插入图片描述

3.3 车流量最多的TopN卡口

//开始计算val fRdd: RDD[Row] = sparkSession.sql("select * from monitor_flow_action where date = '2021-08-23' ").rddfRdd.map(row => (row.getString(7) + "_" + row.getString(6) + "&" + (Math.random() * 30 + 10).toInt, 1)).reduceByKey(_ + _).map(ele => {val area_road_random = ele._1val count = ele._2(area_road_random.split("_")(0), area_road_random.split("_")(1).split("&")(0) + "_" + count)}).groupByKey().map(ele => {val map = new mutable.HashMap[String, Int]()ele._2.foreach(e => {val key = e.split("_")(0)val value = e.split("_")(1).toIntmap.put(key, map.get(key).getOrElse(0) + value)})"区划【" + ele._1 + "】车辆最多的三条道路分别为:" + map.toList.sortBy(_._2).takeRight(3).reverse.mkString("-")}).foreach(println)

在这里插入图片描述

3.4 区域各路速度

随机抽取N个车辆信息,对这些数据可以进行多维度分析(因为随机抽取出来的N个车辆信息可以很权威的代表整个区域的车辆)

val sRdd: RDD[Row] = sparkSession.sql("select * from monitor_flow_action where date = '2021-08-23' ").rddsRdd.map(e=>{((e.getString(7),e.getString(6)),e.getString(5).toInt)}).groupByKey().map(e=>{val list: List[Int] = e._2.toListval i: Int = list.sum/list.size(e._1._1,(e._1._2,i))}).groupByKey().map(e=>{val tuples = e._2.toList.sortBy(_._2).reverse.take(3)var strBui: StringBuilder = new StringBuilderfor (i <- tuples ){val str: String = i._1 + "-均速度为:" + i._2strBui.append(">>>"+str)}(e._1,strBui)}).foreach(println)

在这里插入图片描述

3.5 区域中高速数量

在这里插入图片描述

object Hello04MonitorTopNSpeed {def main(args: Array[String]): Unit = {val sparkSession = ContextUtils.getSparkSession("Hello04MonitorTopNSpeed")MockDataUtil.mock2view(sparkSession)//---------------------开始操作车流量信息,假设任务编号为1 日期参数为今天val flowRdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-20' ").rddval monitor2speedRDD: RDD[(String, Iterable[String])] = flowRdd.map(row => (row.getString(1), row.getString(5))).groupByKey()val speedCount2monitorRDD: RDD[(SpeedCount, String)] = monitor2speedRDD.map(ele => {//获取卡口号val monitorId: String = ele._1//声明一个Map[0,60,100,120]var high = 0;var normal = 0;var low = 0;//获取所有的速度的车辆技术ele._2.foreach(speed => {//判断速度if (speed.toInt > 100) {high += 1} else if (speed.toInt > 60) {normal += 1} else {low += 1}})//创建速度对象(SpeedCount(high, normal, low), monitorId)})speedCount2monitorRDD.sortByKey(false).map(x => (x._2, x._1)).foreach(println)}
}case class SpeedCount(high: Int, normal: Int, low: Int) extends Ordered[SpeedCount] with KryoRegistrator {override def compare(that: SpeedCount): Int = {var result = this.high - that.highif (result == 0) {result = this.normal - that.normalif (result == 0) {result = this.low - that.low}}return result}override def registerClasses(kryo: Kryo): Unit = {kryo.register(SpeedCount.getClass)}
}

在这里插入图片描述

3.6 指定卡口对应卡口车辆轨迹

在这里插入图片描述

def main(args: Array[String]): Unit = {val sparkSession = ContextUtils.getSparkSession("Hello04MonitorTopNSpeed")MockDataUtil.mock2view(sparkSession)//获取数据val area01Rdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' and area_id = '01' ").rddval area02Rdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' and area_id = '02' ").rddval area01CarRdd = area01Rdd.map(row => (row.getString(3), row.getString(7))).groupByKey()val area02CarRdd = area02Rdd.map(row => (row.getString(3), row.getString(7))).groupByKey()area01CarRdd.join(area02CarRdd).foreach(println)}

在这里插入图片描述

3.7 行车轨迹

在这里插入图片描述

 def main(args: Array[String]): Unit = {    val sparkSession = ContextUtils.getSparkSession("AreaCar")    MockDataUtil.mock2view(sparkSession)//查询 车子行驶轨迹 跟车分析    val c1Rdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' ").rdd    val carRdd: RDD[(String, StringBuilder)] = c1Rdd.map(e => {      (e.getString(3), (e.getString(4), e.getString(6), e.getString(2)))    }).groupByKey()      .map(e => {        val tuples: List[(String, String, String)] = e._2.toList.sortBy(_._1)        val list = new StringBuilder        for (i <- tuples) {          //println(i)          val str: String = i._2 + ":" + i._3          list.append(str + "-")        }        (e._1, list)      })    //carRdd.foreach(println) 
}

在这里插入图片描述

3.9 车辆套牌

在这里插入图片描述

  def main(args: Array[String]): Unit = {val sparkSession = ContextUtils.getSparkSession("AreaCar")MockDataUtil.mock2view(sparkSession)
//假设任何的卡口距离都是 10分钟车程 ,如果同一分钟出现在不同的卡口就怀疑是套牌val deckRdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' ").rdddeckRdd.map(e => {val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")(e.getString(3), (dateFormat.parse(e.getString(4)),e.getString(1)))}).groupByKey(1).map(e => {val list: List[(util.Date, String)] = e._2.toList.sortBy(x=>x._1)var bool = falsevar d: util.Date = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse("2021-08-23 00:00:00")var mid="?"for (i <- list) {if (d.getTime - i._1.getTime < 600000 && i._2!=mid )bool = trued = i._1mid=i._2}(e._1, bool)}).filter(f => f._2).foreach(println)}

在这里插入图片描述

3.10 车辆抽样-蓄水池抽样法

在这里插入图片描述

    def main(args: Array[String]): Unit = {val sparkSession = ContextUtils.getSparkSession("Hello04MonitorTopNSpeed")MockDataUtil.mock2view(sparkSession)//获取数据val flowRdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-21' ").rdd//yyyy-MM-dd_HH , rowval hourRDD: RDD[(String, Row)] = flowRdd.map(row => (DateUtils.getDateHour(row.getString(4)), row))//车流量的总数,并进行广播val flowAllCount: Long = hourRDD.count()val broadcastFlowAllCount: Broadcast[Long] = sparkSession.sparkContext.broadcast(flowAllCount)//计算每个小时的比例 并进行广播val hourRatio: collection.Map[String, Double] = hourRDD.countByKey().map(e => {(e._1, e._2 * 1.0 / broadcastFlowAllCount.value)})val broadcastHourRatio: Broadcast[collection.Map[String, Double]] = sparkSession.sparkContext.broadcast(hourRatio)//开始进行抽样val sampleRDD: RDD[Row] = hourRDD.groupByKey().flatMap(ele => {val hour: String = ele._1val list: List[Row] = ele._2.iterator.toList//计算本时段要抽样的数据量val sampleRatio: Double = broadcastHourRatio.value.get(hour).getOrElse(0)val sampleNum: Long = Math.round(sampleRatio * 100)//开始进行取样(蓄水池抽样)val sampleList: ListBuffer[Row] = new ListBuffer[Row]()sampleList.appendAll(list.take(sampleNum.toInt))for (i <- sampleNum until list.size) {//随机生成一个数字val num = (Math.random() * list.size).toIntif (num < sampleNum) {sampleList.update(num, list(i.toInt))}}sampleList})sampleRDD.foreach(println)}

在这里插入图片描述

3.11 道路转换率

在这里插入图片描述

  def main(args: Array[String]): Unit = {//创建会话val sparkSession = ContextUtils.getSparkSession("Hello07MonitorConvertRatio")MockDataUtil.mock2view(sparkSession)//开始计算val flowRdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' ").rdd//计算每个卡口的总通车量val monitorCountMap: collection.Map[String, Long] = flowRdd.map(row => (row.getString(1), row)).countByKey()//计算卡口到卡口的通行率val sortRDD: RDD[(String, List[Row])] = flowRdd.map(row => (row.getString(3), row)).groupByKey().map(ele => (ele._1, ele._2.iterator.toList.sortBy(_.getString(4))))val m2mMap: collection.Map[String, Long] = sortRDD.flatMap(ele => {//存放映射关系val map: mutable.HashMap[String, Int] = mutable.HashMap[String, Int]()val list: List[Row] = ele._2.toListfor (i <- 0 until list.size; j <- i + 1 until list.size) {//拼接Keyval key = list(i).getString(1) + "->" + list(j).getString(1)map.put(key, map.get(key).getOrElse(0) + 1);}//返回结果map.toList}).countByKey()//开始进行计算m2mMap.foreach(ele => {println("卡口[" + ele._1 + "]的转换率为:" + ele._2.toDouble / monitorCountMap.get(ele._1.split("->")(0)).get)})
}

在这里插入图片描述

3.12 区域通过的TopN卡口

  def main(args: Array[String]): Unit = {//创建会话val sparkSession = ContextUtils.getSparkSession("Hello07MonitorConvertRatio")MockDataUtil.mock2view(sparkSession)//开始计算val flowRdd: RDD[Row] = sparkSession.sql("select * from " + MockDataUtil.MONITOR_FLOW_ACTION + " where date = '2021-08-23' ").rdd//开始计算flowRdd.map(row => (row.getString(7) + "_" + row.getString(6) + "&" + (Math.random() * 30 + 10).toInt, 1)).reduceByKey(_ + _).map(ele => {val area_road_random = ele._1val count = ele._2(area_road_random.split("_")(0), area_road_random.split("_")(1).split("&")(0) + "_" + count)}).groupByKey().map(ele => {val map = new mutable.HashMap[String, Int]()ele._2.foreach(e => {val key = e.split("_")(0)val value = e.split("_")(1).toIntmap.put(key, map.get(key).getOrElse(0) + value)})"区划【" + ele._1 + "】车辆最多的三条道路分别为:" + map.toList.sortBy(_._2).takeRight(3).reverse.mkString("-")}).foreach(println)
}
areaId2DetailInfos"SELECT ""monitor_id,""car,""road_id,""area_id ""FROM traffic.monitor_flow_action ""WHERE date >= '"startDate"'""AND date <= '"endDate"'"areaId2AreaInfoRDDareaid          areanametmp_car_flow_basic = monitor_flow_action  areaId2AreaInfoRDDmonitor_id car road_id  area_id area_name 统计各个区域各个路段车流量的临时表area_name  road_id    car_count      monitor_infos海淀区    01             100      0001=20|0002=30|0003=50注册成临时表tmp_area_road_flow_count"SELECT ""area_name,""road_id,""count(*) car_count,"//group_concat_distinct 统计每一条道路中每一个卡扣下的车流量"group_concat_distinct(monitor_id) monitor_infos "//0001=20|0002=30"FROM tmp_car_flow_basic ""GROUP BY area_name,road_id"0001=20|0002=30insert into areaTop3Road"SELECT ""area_name,""road_id,""car_count,""monitor_infos, ""CASE ""WHEN car_count > 170 THEN 'A LEVEL' ""WHEN car_count > 160 AND car_count <= 170 THEN 'B LEVEL' ""WHEN car_count > 150 AND car_count <= 160 THEN 'C LEVEL' ""ELSE 'D LEVEL' ""END flow_level "
"FROM (""SELECT ""area_name,""road_id,""car_count,""monitor_infos,""row_number() OVER (PARTITION BY area_name ORDER BY car_count DESC) rn ""FROM tmp_area_road_flow_count "") tmp "
"WHERE rn <=3"

相关文章:

Spark项目实战-卡口流量统计

一、卡口介绍 卡口摄像头正对车道安装&#xff0c;拍摄正面照片。 功能&#xff1a;抓拍正面特征 这种摄像头多安装在国道、省道、高速公路的路段上、或者城区和郊区交接的主要路口&#xff0c;用来抓拍超速、进出城区车辆等行为。它进行的是车辆正面抓拍&#xff0c;可以清晰…...

kubernetesr进阶--Secret概述

概述 Kubernetes Secret 对象可以用来储存敏感信息&#xff0c;例如&#xff1a;密码、OAuth token、ssh 密钥等。如果不使用 Secret&#xff0c;此类信息可能被放置在 Pod 定义中或者容器镜像中。将此类敏感信息存储到 Secret 中&#xff0c;可以更好地&#xff1a; 控制其使…...

在 Python 中使用 Pillow 进行图像处理【2/4】

第二部分 一、说明 该文是《在 Python 中使用 Pillow 进行图像处理》的第二部分&#xff0c;主要介绍pil库进行一般性处理&#xff1a;如&#xff1a;图像卷积、钝化、锐化、阈值分割。 二、在 Python 中使用 Pillow 进行图像处理 您已经学习了如何裁剪和旋转图像、调整图像大…...

XTU-OJ 1171-coins

题目描述 一个均质硬币抛n次&#xff0c;求不存在连续2次为正面的方案数。 输入 每行一个正整数n&#xff0c;n≤40。如果n为0&#xff0c;表示输入结束&#xff0c;不需要处理。 输出 每行输出一个结果&#xff0c;为一个整数。 样例输入 1 2 3 0样例输出 2 3 5 解题思路&…...

如何使用 JMeter 进行 HTTPS 请求测试?

本文将介绍如何使用 JMeter 测试 HTTPS 请求&#xff0c;并提供相关的技巧和注意事项。 在进行性能测试时&#xff0c;很多网站都采用了 HTTPS 协议。当我们测试 HTTPS 请求&#xff0c;如果服务端开启了双向认证&#xff0c;则需要客户端发送请求时带上证书。本文介绍如何在 …...

KNN-水仙花的分类

题目&#xff1a; 思路&#xff1a; 1、处理数据集&#xff0c;这里用的是题目已知的数据集&#xff0c;所以说需要提前将写好的数据放到excel表格里&#xff0c;再进行读取。 2、将数据集划分为训练集和测试集 3、定义K-NN模型。 4、训练模型 5、预测模型 6、计算分类精…...

Kotlin 如何确定协程是否启动

在Kotlin中&#xff0c;你可以确定协程是否已启动并正在运行&#xff0c;可以使用Job接口来管理协程&#xff0c;并使用一些函数来检查协程的状态。以下是一些常见的方法&#xff1a; 1.launch 函数返回一个 Job 对象&#xff0c;可以使用这个对象来确定协程的状态。例如&…...

【Spring Boot】Spring Boot集成RabbitMQ

一、发送和接收消息 Spring Boot提供了`spring-boot-starter-amqp`组件,只需要简单地配置即可与Spring Boot无缝集成。下面通过示例演示集成RabbitMQ实现消息的接收和发送。 步骤01 配置pom包。 创建Spring Boot项目并在pom.xml文件中添加spring-bootstarter-amqp等相关组件…...

Hadoop部署过程中问题总结

Hadoop伪分布式集群部署问题总结 一、HDFS初始化失败 初始化失败&#xff0c;HDFS初始化操作如下&#xff1a; hdfs namenode -format然后我运行后报错&#xff1a;error parsing conf core-site.xml 出现这个信息就说明core-site.xml配置文件出错了&#xff0c;用vim命令可…...

低成本IC上岸攻略—IC设计网课白嫖篇

数字电路基础 清华大学 王红主讲&#xff1a;数字电子技术基础 西安电子科技大学 任爱锋主讲&#xff1a;数字电路与逻辑设计 模拟电路基础 上交大 郑益慧主讲&#xff1a;模拟电子技术基础 清华大学 华成英主讲&#xff1a;模拟电子技术基础 半导体物理&#xff1a; 西…...

BootLoader为什么要分阶段?

BootLoader&#xff08;引导加载程序&#xff09;分阶段的设计主要是为了实现系统的启动和引导过程的可靠性、可维护性和灵活性。这种分阶段的设计允许引导加载程序执行不同的任务&#xff0c;并在不同的环境下工作。以下是引导加载程序分阶段的主要原因&#xff1a; 1. 启动环…...

Centos8: 安装python2, 并设置默认版本

文章目录 原本centos上已经有python3.6了&#xff0c;因为要运行旧代码&#xff0c;需要安装python2版本。 #在CentOS 8上安装Python 2 sudo dnf install python2#设置默认Python版本 python2 sudo alternatives --set python /usr/bin/python2#设置默认Python版本 python3 sud…...

【逆向】导入表注入

练手的exe链接 链接&#xff1a;https://pan.baidu.com/s/1_87QNHaZYlfY_5uwIRePUQ?pwd6gds 提取码&#xff1a;6gds 原理&#xff1a; 在动态链接库一章提到DllMain&#xff0c;这里再回顾一次 当dll被加载进4GB空间时&#xff0c;会调用一次DllMain&#xff08;入口方法&…...

Unity游戏开发中打造游戏攻击技能架构与设计

一、技能系统的设计 在 MOBA 游戏中&#xff0c;每个英雄角色都会有多个技能&#xff0c;这些技能可以分为普通攻击和技能攻击两种。普通攻击是英雄角色的基本攻击方式&#xff0c;而技能攻击则需要消耗一定的资源&#xff08;如蓝量&#xff09;才能使用。在设计技能系统时&a…...

【微信小程序开发】小程序微信用户授权登录(用户信息手机号)

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于小程序的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 授权流程讲解 一.用户信息授权登录 1.w…...

VSCode 自动格式化

1.打开应用商店&#xff0c;搜索 prettier code formatter &#xff0c;选择第一个&#xff0c;点击安装。 2.安装完成后&#xff0c;点击文件&#xff0c;选择首选项&#xff0c;选择设置。 3.在搜索框内输入 save &#xff0c;勾选在保存时格式化文件。 4.随便打开一个文件&a…...

数据库、数据仓库相关

1. 数据库与数据仓库的区别 数据库 Database (Oracle, Mysql, PostgreSQL)主要用于事务处理。数据仓库 Datawarehouse (Amazon Redshift, Hive)主要用于数据分析。 数据库和数据仓库是两种不同的数据存储方式&#xff0c;它们的设计目的和使用场景也有所不同。数据库通常用于…...

【STM32】RCC时钟模块(使用HAL库)

https://gitee.com/linhir-linhir/stm32-f103-c8/blob/master/STM32%E6%9C%80%E6%96%B0%E5%9B%BA%E4%BB%B6%E5%BA%93v3.5/Libraries/STM32F10x_StdPeriph_Driver/inc/stm32f10x_rcc.h STM32最新固件库v3.5/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F10x/system_stm32f10x.c…...

WPF中的绑定知识详解(含案例源码分享)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

【JVM】类的生命周期

【JVM】类的生命周期 文章目录 【JVM】类的生命周期1. 生命周期概述2. 加载阶段3. 连接阶段3.1 验证3.2 准备3.3 解析 4. 初始化阶段4.1 触发初始化的方式4.2 clinit不存在的情况4.3 多个类的初始化 5. 总结 1. 生命周期概述 类的生命周期分为5/7个阶段&#xff1a; 加载(Loa…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...