力扣第1005题 K 次取反后最大化的数组和 c++ 贪心 双思维
题目
1005. K 次取反后最大化的数组和
简单
相关标签
贪心 数组 排序
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。
重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1 输出:5 解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3 输出:6 解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2 输出:13 解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
思路和解题方法
- 首先,我们需要对数组进行排序。由于是要使数组中的数尽可能地都为正数,因此我们应该把绝对值小的负数变为正数。
- 这样一来,负数的数量就会减少,而整数和零的数量就会增加,这有利于最终结果更接近最优解。
- 排序后,我们可以从小到大遍历数组,每当遇到一个负数,就将其取反,同时减少可取反的次数 k。
- 这里有个问题,如果我们仅仅只考虑绝对值最小的那个负数,需要取反多少次呢?显然,如果可取反的次数 k 为奇数,那么最终结果就是把绝对值最小的那个负数取反,而如果可取反的次数 k 为偶数,则不需要取反它。
- 另一方面,如果可取反的次数 k 为偶数,那么显然数组中所有的数都会保持不变。最后,我们只需简单地处理一下数组的和即可。
复杂度
时间复杂度:
O(n * logn)
时间复杂度:排序的时间复杂度为 O(nlogn),for 循环的时间复杂度为 O(n),因此总的时间复杂度为 O(nlogn + nlogn + n) = O(nlogn)。
空间复杂度
O(1)
空间复杂度:除了输入的数组外,算法只涉及到常量级别的额外空间。因此空间复杂度为 O(1)。
c++ 代码一
class Solution {
public:int largestSumAfterKNegations(vector<int>& nums, int k) {sort(nums.begin(), nums.end()); // 对数组进行排序,使得负数排在前面int min1 = 1000; // 初始化绝对值最小的元素为一个较大的数int min2 = 0; // 记录绝对值最小的元素的索引for (int i=0; i<nums.size(); i++) {if(abs(nums[i]) <= min1) { // 如果当前元素的绝对值小于等于min1min1 = abs(nums[i]); // 更新min1为当前元素的绝对值min2 = i; // 记录绝对值最小的元素的索引}if(nums[i] < 0 && k > 0) { // 如果当前元素是负数且还有剩余的翻转次数nums[i] *= -1; // 将当前元素取反k--; // 翻转次数k减一}}if(k%2 == 1) // 如果剩余的翻转次数是奇数nums[min2] *= -1; // 将绝对值最小的元素取反int ans = 0;for(int n : nums)ans += n; // 计算数组中所有元素的和return ans; // 返回最终的数组和作为结果}
};
思路和解题方法二
- 对数组进行排序
排序函数中采用自定义比较器的方式,把按照绝对值从大到小进行排序。这样排序后,数组中绝对值最大的元素会排在数组的最末尾,而绝对值最小的元素则会排在数组的最前面。
- 取反负数
遍历数组,如果当前的元素是负数,那么就把它取反(变为正数),同时将剩余可取反次数减一。注意我们要在剩余可取反次数大于 0 且当前元素是负数的情况下才能取反。
- 处理无法取反的情况
如果我们完成了步骤 2 后,还有剩余可取反的次数,但已经不存在可以被取反的元素了,那么我们需要对数组进行调整,使得我们所取反的元素的绝对值最小。具体地说,我们需要在数组的最末尾找到一个元素,并将它取反。因为这个元素绝对值最大,所以取反后对原来的和的影响最小。由于我们对数组进行了排序,因此直接访问最末尾的元素即可。
- 计算数组的和
遍历整个数组,计算所有元素之和即可。最终的和就是我们的答案。
复杂度
时间复杂度:
O(n * logn)
时间复杂度:排序的时间复杂度为 O(nlogn),for 循环的时间复杂度为 O(n),因此总的时间复杂度为 O(nlogn + nlogn + n) = O(nlogn)。
空间复杂度
O(1)
空间复杂度:除了输入的数组外,算法只涉及到常量级别的额外空间。因此空间复杂度为 O(1)。
c++ 代码二
class Solution {// 定义排序比较器,按照绝对值从大到小排序static bool cmp(int a, int b) {return abs(a) > abs(b);}
public:int largestSumAfterKNegations(vector<int>& A, int K) {sort(A.begin(), A.end(), cmp); // 第一步:对数组进行排序for (int i = 0; i < A.size(); i++) { // 第二步:取反负数if (A[i] < 0 && K > 0) {A[i] *= -1;K--;}}if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步:处理无法取反的情况int result = 0;for (int a : A) result += a; // 第四步:计算数组和return result;}
}
觉得有用的话可以点点赞,支持一下。
如果愿意的话关注一下。会对你有更多的帮助。
每天都会不定时更新哦 >人< 。
相关文章:

力扣第1005题 K 次取反后最大化的数组和 c++ 贪心 双思维
题目 1005. K 次取反后最大化的数组和 简单 相关标签 贪心 数组 排序 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以…...

Swoole 4.8版本的安装
1、从github拉取安装包 Release v4.8.13 swoole/swoole-src GitHub 2、解压压缩包 tar -zxvf ./v4.8.13.tar.gzcd ./swoole-src-4.8.13 3、执行安装命令 phpize && \ ./configure && \ make && sudo make install 4、检查swoole模块是否安装完成…...

ChatGPT和Copilot协助Vue火速搭建博客网站
AI 对于开发人员的核心价值 网上会看到很多 AI 的应用介绍或者教程 使用 AI 聊天,咨询问题 —— 代替搜索引擎使用 AI 写各种的电商文案(淘宝、小红书)使用 AI 做一个聊天机器人 —— 这最多算猎奇、业余爱好、或者搞个套壳产品来收费 以上…...

javaEE -8(9000字详解网络编程)
一:网络编程基础 1.1 网络资源 所谓的网络资源,其实就是在网络中可以获取的各种数据资源,而所有的网络资源,都是通过网络编程来进行数据传输的。 用户在浏览器中,打开在线视频网站,如优酷看视频ÿ…...

FPGA从入门到精通(二十)SignalTapII
这一篇将介绍SignalTapII。 之前的工程我们是做仿真,设置激励,观察输出波形去判断代码没有问题,但事实上我们真实的需求是综合后的代码下载到FPGA芯片中能够符合预期。 其中可能出现问题的原因有: 1、我们是写testbench设置激励…...

RHCE---shell 条件测试
文章目录 目录 文章目录 前言 一.条件测试 概述: 文件测试 整数测试: 总结 前言 当我们完成某一命令的编写时,除了观察输出的内容,我们又如何得知命令是否执行成功呢? 这里,我们需要用到条件测试 一.条…...

Linux下QT打开文件选择对话框时,程序报错退出
系统:Ubuntu QString fileName QFileDialog::getOpenFileName(this, "open", "./", "document Files (*.pdf)"); 调用该语句弹出文件对话框时,程序崩溃退出 错误提示: (Widget:5272): Gtk-WARNING **: 14…...
PyTorch中的intrusive_ptr
PyTorch中的intrusive_ptr 前言 intrusive_ptr與unique_ptr,shared_ptr等一樣,都是smart pointer。但是intrusive_ptr比較特別,它所指向的物件類型必須繼承自intrusive_ptr_target,而intrusive_ptr_target必須實現引用計數相關的…...

webrtc-stream编译报错记录
磁盘空间不足错误 错误信息 677.2 fatal: cannot create directory at blink/web_tests/external/wpt: No space left on device说明:这个错误是由于本地在配置docker资源时所给磁盘空间太小导致,直接根据镜像大小合理分配资源大小即可 pushd和popd执…...

什么是Docker CLI
Docker CLI(命令行界面)是一个工具,允许用户通过命令行或终端与Docker进行交互。Docker是一个开源平台,用于开发、运送和运行应用程序。Docker使用容器化技术来打包应用程序及其依赖项,以确保在不同环境中的一致性和隔…...

Java项目_家庭记账(简易版)
文章目录 简介代码实现 简介 该项目主要用来练习,Java的变量,运算符,分支结构和循环结构的知识点。 程序界面如下: 登记收入 登记支出 收支明细 程序退出 代码实现 package project;import java.util.Scanner;import sta…...

vscode json文件添加注释报错
在vscode中创建json文件,想要注释一波时,发现报了个错:Comments are not permitted in JSON. (521),意思是JSON中不允许注释 以下为解决方法: 在vscode的右下角中找到这个,点击 在出现的弹窗中输入json wit…...
vue3移动端嵌入pdf的两种办法
1.使用embed嵌入 好处:简单,代码量少,功能齐全 缺点:有固定样式,难以修改,不可定制 <embed class"embedPdf" :src"pdfurl" type"application/pdf">2.使用vue-pdf-e…...

中文编程开发语言工具系统化教程初级1上线
中文编程系统化教程初级1 学习编程捷径:(不论是正在学习编程的大学生,还是IT人士或者是编程爱好者,在学习编程的过程中用正确的学习方法 可以达到事半功倍的效果。对于初学者,可以通过下面的方法学习编程,…...

零售数据分析模板分享(通用型)
零售数据来源多,数据量大,导致数据的清洗整理工作量大,由于零售的特殊性,其指标计算组合更是多变,进一步导致了零售数据分析工作量激增,往往很难及时分析数据,发现问题。那怎么办?可…...

Spring Cloud之微服务
目录 微服务 微服务架构 微服务架构与单体架构 特点 框架 总结 SpringCloud 常用组件 与SpringBoot关系 版本 微服务 微服务:从字面上理解即:微小的服务; 微小:微服务体积小,复杂度低,一个微服…...
Linux命令(104)之date
linux命令之date 1.date介绍 linux命令date用来设置和显示系统日期和时间 2.date用法 date [参数] date参数 参数说明-s修改并设置时间-d可以显示以前和未来的时间%H小时%M分钟%S秒%X等价于%H %M %S%F显示当前所有时间属性%Y完整年份%m月%d日%A星期的全称 3.实例 3.1.当前…...

微信小程序投票管理系统:打造智能、便捷的投票体验
前言 随着社交网络的兴起和移动互联网的普及,人们对于参与和表达意见的需求越来越强烈。在这个背景下,微信小程序投票管理系统应运而生。它为用户提供了一个智能、便捷的投票平台,使用户可以轻松创建和参与各种类型的投票活动。本文将详细介…...

【算法训练-动态规划 五】【二维DP问题】编辑距离
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【动态规划】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…...

Windows电脑如何录制电脑桌面?
如果你使用的电脑是Windows系统,那你是不是想知道如何在Windows电脑上录制电脑桌面? 本文以win10为例,好消息是,Windows 10电脑自带录屏工具,你可以直接使用此录屏工具轻松录制视频,而无需下载其他第三方软…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...