Go语言内存管理详解-学习笔记
1 自动内存管理
1.1 相关概念
- Mutator:业务线程,分配新对象,修改对象指向关系
- Collector:GC线程,找到存活对象,回收死亡对象的内存空间
- Serial GC:只有一个collector(需要暂停)
- Parallel GC:支持多个collectors同时回收的GC算法(需要暂停)
- Concurrent GC:mutator(s)和collector(s)可以同时执行(不需要暂停)
1.2 追踪垃圾回收
对象被回收的条件:指针指向关系不可达的对象
标记可达对象,清理所有不可达对象
1.3 分代GC
很多对象在分配出来后很快就不再使用了
对年轻和老年的对象,制定不同的GC策略,降低整体内存管理的开销
1.4 引用计数
存活条件:当且仅当引用数大于0
2 Go内存管理及优化
2.1 Go内存分配
提前将内存分块。首先向OS申请一大块内存,然后将内存划分为若干个大块,再将大块划分成特定大小的小块用于对象分配,有的大块用来分配不包含指针的对象(GC不需要扫描),有的大块分配包含指针的对象(GC需要扫描)。
缓存策略。每个P包含一个缓存用于为P上的G分配对象,如果缓存分配完毕,向下一级缓存申请未分配的大块。
2.2 Go内存管理优化
对象分配中,小对象占比较高
2.3 优化方案:Balanced GC
每个G都绑定一大块内存,称作GAB,用于无指针小对象分配。使用三个指针维护GAB:base、end、top
带来的问题:内存被延迟释放
解决办法:移动GAB中存活的对象到另一个GAB中,然后释放原GAB。
3 编译器和静态分析
3.1 编译器的结构
3.2 静态分析
不执行程序代码,推导程序的行为,分析程序的性质。
控制流:程序执行的流程

数据流:数据在控制流上的传递
3.3 过程内分析和过程间分析
过程内分析:仅在函数内部进行分析
过程间分析:考虑过程调用时参数传递和返回值的数据流和控制流
过程间分析是个难点问题,因为需要同时分析控制流和数据流
4 Go编译器优化
4.1 函数内联
将被调用函数的函数体的副本替换到调用位置上,同时重写代码以反映参数的绑定
优点:
- 消除函数调用开销
- 将过程间分析转化为过程内分析
缺点:
- 函数体变大,icache不友好
- 编译生成的Go镜像变大
4.2 Beast Mode
调整函数内联的策略,使更多函数被内联,更多对象不逃逸,可以分配在栈上
4.3 逃逸分析
分析代码中指针的动态作用域:指针在何处可以被访问
若发现指针p在当前作用域s:
- 作为参数传递给其他函数
- 传递给全局变量
- 传递给其他的goroutine
- 传递给已逃逸的指针指向的对象
则指针p指向的对象逃逸出s,反之则没有逃逸
相关文章:

Go语言内存管理详解-学习笔记
1 自动内存管理 1.1 相关概念 Mutator:业务线程,分配新对象,修改对象指向关系Collector:GC线程,找到存活对象,回收死亡对象的内存空间Serial GC:只有一个collector(需要暂停&#…...
Geospatial Data Science (4): Spatial weights
Geospatial Data Science (4): Spatial weights 在本节中,我们将学习空间分析中关键部分之一的来龙去脉:空间权重矩阵。这些是结构化的数字集,用于形式化数据集中观测值之间的地理关系。本质上,给定地理的空间权重矩阵是维度 N N N 乘以 N N N 的正定矩阵,其中...

JUC-Synchronized相关内容
设计同步器的意义多线程编程中,有可能会出现多个线程同时访问同一个共享、可变资源的情况,这个资源我们称之其为临界资源;这种资源可能是:对象、变量、文件等。共享:资源可以由多个线程同时访问可变:资源可…...

【c++】文件操作(文本文件、二进制文件)
文章目录文件操作文本文件写文件读文件二进制文件写文件读文件文件操作 程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放; 通过文件可以将数据持久化; c中对文件操作需要包含头文件 文件类型分为两种: 1、文本文…...

带你了解IP报警柱的特点
IP可视报警柱是一款室外防水紧急求助可视对讲终端。安装在学校、广场、道路人流密集和案件高发区域,当发生紧急情况或需要咨询求助时按下呼叫按钮立即可与监控中心值班人员通话,值班人员也可通过前置摄像头了解现场情况并广播喊话。IP可视报警柱的使用特…...

一步步教你电脑变成服务器,tomcat的花生壳设置(原创)
1,首先你去https://console.oray.com/这网站注册个帐号,如果注册成功它会送你一个免费域名,当然不记得也没关系,你记住你注册的 帐号跟密码,然后下载它的软件(花生壳动态域名6.0正式版)有xp跟li…...
Python 卷积神经网络 ResNet的基本编写方法
ResNet(Residual Network)是由微软亚洲研究院提出的深度卷积神经网络,它在2015年的ImageNet挑战赛上取得了第一名的好成绩。ResNet最大的特点是使用了残差学习,可以解决深度网络退化问题。在传统的深度神经网络中,随着…...
【索引】什么是索引
📔 笔记介绍 大家好,千寻简笔记是一套全部开源的企业开发问题记录,毫无保留给个人及企业免费使用,我是作者星辰,笔记内容整理并发布,内容有误请指出,笔记源码已开源,前往Gitee搜索《…...
【算法刷题】动态规划算法题型及方法归纳
动态规划特点 动态规划中每一个状态一定是由上一个状态推导出来,根据这个特点,可以在状态计算过程中,存储某一条件下的数据,当再次遍历该条件时,直接取该条件对应的数据即可,可以避免重复计算,…...

PolarDB数据库的CSN机制
背景 对postgres数据库熟悉的同学会发现在高并发场景下在获取快照处易出现性能瓶颈,其原因在于PG使用全局数组在共享内存中保存所有事务的状态,在获取快照时需要加锁以保证数据一致性。获取快照时需要持有ProcArraryLock共享锁比遍历ProcArray数组中活跃…...

使用kubeadm 部署kubernetes 1.26.1集群 Calico ToR配置
目录 机器信息 升级内核 系统配置 部署容器运行时Containerd 安装crictl客户端命令 配置服务器支持开启ipvs的前提条件 安装 kubeadm、kubelet 和 kubectl 初始化集群 (master) 安装CNI Calico 集群加入node节点 机器信息 主机名集群角色IP内…...

Servlet笔记(11):Servletcontext对象
1、什么是ServletContext ServletContext是一个全局储存空间,随服务器的生命周期变化, Cookie,Session,ServletContext的区别 Cookie: 存在于客户端的本地文本文件 Session: 存在于服务器的文本文件&#…...
EM算法是什么
EM算法是什么 EM算法(Expectation-Maximization Algorithm)是一种用于参数估计的迭代算法。它常被用于含有隐变量(latent variable)的概率模型中,例如高斯混合模型、隐马尔可夫模型等。 EM算法分为两个步骤ÿ…...

C++---线性dp---方格取数(每日一道算法2023.2.25)
注意事项: 本题属于"数字三角形"和"摘花生"两题的进阶版,建议优先看懂那两道,有助理解。 题目: 输入: 8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0输出: 67#include <cm…...

《第一行代码》 第八章:应用手机多媒体
一,使用通知 第一步,创建项目,书写布局 <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:orientation"vertical"android:layout_width"match_parent"android:layout_he…...

C++设计模式(20)——迭代器模式
亦称: Iterator 意图 迭代器模式是一种行为设计模式, 让你能在不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素。 问题 集合是编程中最常使用的数据类型之一。 尽管如此, 集合只是一组对…...

戴尔Latitude 3410电脑 Hackintosh 黑苹果efi引导文件
原文来源于黑果魏叔官网,转载需注明出处。硬件型号驱动情况主板戴尔Latitude 3410处理器英特尔酷睿i7-10510U已驱动内存8GB已驱动硬盘SK hynix BC511 NVMe SSD已驱动显卡Intel UHD 620Nvidia GeForce MX230(屏蔽)无法驱动声卡Realtek ALC236已驱动网卡Realtek RTL81…...
一起Talk Android吧(第五百零四回:如何调整组件在约束布局中的位置)
文章目录 背景介绍调整方法一调整方法二经验分享各位看官们大家好,上一回中咱们说的例子是"解决retrofit被混淆后代码出错的问题",这一回中咱们说的例子是" 如何调整组件在约束布局中的位置"。闲话休提,言归正转, 让我们一起Talk Android吧! 背景介绍…...

ssh连不上实验室的物理机了
实验室的电脑,不能在校外用 ssh 连接了 192.168.1.33 是本地地址,掩码16位,图1。 192.168.1.14 是实验室的另一台可以ssh连接的物理机,掩码16。 192.168.0.1 是无线路由器地址。 192.168.0.2 是192.168.1.14上的虚拟机地址&#…...
selinux讲解
Selinux讲解 1、selinux的概述 Selinux的历史 Linux安全性与windows在不开启防御措施的时候是一样的;同样是C2级别的安全防护安全级别评定: D–>C1–>C2–>B1–>B2–>B3–>A1 D级,最低安全性C1级,主存取控制…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...

sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...

leetcode_69.x的平方根
题目如下 : 看到题 ,我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历,我们是整数的平方根,所以我们分两…...
2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。在ASPICE中,需求分析的关键步骤包括: 需求细化:将从需求收集阶段获得的高层需…...

Web APIS Day01
1.声明变量const优先 那为什么一开始前面就不能用const呢,接下来看几个例子: 下面这张为什么可以用const呢?因为复杂数据的引用地址没变,数组还是数组,只是添加了个元素,本质没变,所以可以用con…...