当前位置: 首页 > news >正文

[卷积神经网络]FasterNet论文解析

一、概述

        FasterNet是CVPR2023的文章,通过使用全新的部分卷积PConv,更高效的提取空间信息,同时削减冗余计算和内存访问,效果非常明显。相较于DWConv,PConv的速度更快且精度也非常高,识别精度基本等同于大型网络Swin-B,但是在GPU上可以提升36%的吞吐量。原文地址和代码地址如下:

Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networksicon-default.png?t=N7T8https://arxiv.org/abs/2303.03667FasterNeticon-default.png?t=N7T8https://github.com/JierunChen/FasterNet

二、基本结构

        1.PConv

        FasterNet的核心是PConv(Partial Conv),PConv有比常规Conv更低的FLOPs和比DWConv和GConv更高的FLOPs,能更好的利用设备的计算能力。

         整个FasterNet的网络结构如上图所示。PConv的工作原理是:仅将输入特征图的一部分通道用于特征提取,其他的通道保持不变(即c_pc通道),使用部分的通道数为c_p。可以认为输入特征图和输出特征图具有相同的通道。而PConv的FLOPS可以表示为:

                FLOPS = h\times w \times k^2 \times c_p^2

        其中c_pc一起组成分离比:r=\frac{c_p}{c},在r=\frac{1}{4}时,PConv仅有Conv\frac{1}{16}的FLOPS,同时PConv还有更小的内存访问量:

                h \times w \times 2c_p+k^2 \times c_p^2 \approx h \times w \times 2c_p

        2.T型Conv

        通过将逐点卷积(PWConv)附加到PConv上,使得输入特征图上的有效感受野看起来像一个T型的Conv,这种卷积会更加关注中心位置。

        3.作为通用骨干网络

        使用PConv搭建的FasterNet如上面所示,其能以较快的速度处理多种视觉任务。FasterNet具备4个Stage,每个Stage之前有一个嵌入层(Embedding;步长为4的4x4 Conv)或一个合并层(Mereging;步长为2的2x2 Conv),使用哪种间隔与其是否需要下采样有关。

        每一个Faster Block的后面跟着两个PWConv层,最后统一放置一个全局池化(Global Pool)和一个全连接层(FC)

三、结论

        FasterNet的主要优势在于保证一定精度的同时提升运算速度。在对比实验中,FasterNet的参数量略大于MobileNet等轻型骨干网络,GFLOPS也略高于轻型骨干网络。但网络延迟却更低。

相关文章:

[卷积神经网络]FasterNet论文解析

一、概述 FasterNet是CVPR2023的文章,通过使用全新的部分卷积PConv,更高效的提取空间信息,同时削减冗余计算和内存访问,效果非常明显。相较于DWConv,PConv的速度更快且精度也非常高,识别精度基本等同于大型…...

知识图谱+推荐系统 文献阅读

文献阅读及整理 知识图谱推荐系统 知识图谱 1 基于知识图谱的电商领域智能问答系统研究与实现 [1]蒲海坤. 基于知识图谱的电商领域智能问答系统研究与实现[D].西京学院,2022.DOI:10.27831/d.cnki.gxjxy.2021.000079. 知识点 BIO标记策略进行人工标记,构建了电商领域商品…...

shell_39.Linux参数测试

参数测试 在 shell 脚本中使用命令行参数时要当心。如果运行脚本时没有指定所需的参数&#xff0c;则可能会出问题&#xff1a; $ ./positional1.sh ./positional1.sh: line 5: ((: number < : syntax error: operand expected (error token is "< ") The …...

3D模型格式转换工具HOOPS Exchange助力SIMCON搭建注塑项目

行业&#xff1a;设计与制造 / 注塑成型 / 模拟 挑战&#xff1a;注塑成型商面临着以高效的方式为客户生产零件的挑战。需要大量的试验才能生产出适合的零件&#xff0c;同时模具需要进行多次物理修改&#xff0c;每次修改周期最长需要四个星期&#xff0c;成本高达四到五位数…...

Linux_虚拟内存机制

虚拟内存是如何工作的 我们的程序中使用的所有地址都是虚拟地址&#xff0c;但实际数据是从磁盘空间缓存在物理内存中&#xff0c;读的还是内存中的数据&#xff0c;所以每次CPU的访存操作都会先将虚拟内存交给CPU中的MMU硬件&#xff0c;利用存在主存&#xff08;实际也可能在…...

淘宝官方开放平台API接口获得店铺的所有商品、商品id、商品标题、销量参数调用示例

在电商平台中&#xff0c;获取店铺所有商品是一个非常常见的需求。这个功能允许用户一次性获取指定店铺中的所有商品信息&#xff0c;方便用户对店铺的商品进行浏览和筛选。下面将对获取店铺所有商品接口的功能进行介绍。 获取全部商品信息&#xff1a;通过调用获取店铺所有商…...

Java Spring 通过 AOP 实现方法参数的重新赋值、修改方法参数的取值

AOP 依赖 我创建的项目项目为 SpringBoot 项目 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.1.3</version></parent><dependency><groupId…...

Real3D FlipBook jQuery Plugin 3.41 Crack

Real3D FlipBook 和 PDF 查看器 jQuery 插件 - CodeCanyon 待售物品 实时预览 截图 视频预览 Real3D Flipbook jQuery 插件 - 1 Real3D Flipbook jQuery 插件 - 2 Real3D Flipbook jQuery 插件 - 3 新功能 – REAL3D FLIPBOOK JQUERY 插件的 PDF 到图像转换器 一款用于将…...

Pytorch:model.train()和model.eval()用法和区别,以及model.eval()和torch.no_grad()的区别

1 model.train() 和 model.eval()用法和区别 1.1 model.train() model.train()的作用是启用 Batch Normalization 和 Dropout。 如果模型中有BN层(Batch Normalization&#xff09;和Dropout&#xff0c;需要在训练时添加model.train()。model.train()是保证BN层能够用到每一…...

Linux CentOS 8(firewalld的配置与管理)

Linux CentOS 8&#xff08;firewalld的配置与管理&#xff09; 目录 一、firewalld 简介二、firewalld 工作概念1、预定义区域&#xff08;管理员可以自定义修改&#xff09;2、预定义服务 三、firewalld 配置方法1、通过firewall-cmd配置2、通过firewall图形界面配置 四、配置…...

C复习-指针

参考&#xff1a; 里科《C和指针》 指针存储的是一个地址&#xff0c;实际就是一个值。 如果像下面一样对未初始化的指针进行赋值&#xff0c;如果a的初始值是非法地址&#xff0c;那么会报错。UNIX会提示段错误segmentation violation&#xff0c;或内存错误memory fault&…...

Runnable和Thread的区别,以及如何调用start()方法

Runnable和Thread都是Java多线程编程中的核心概念&#xff0c;它们之间存在以下主要差异&#xff1a; Runnable是一个接口&#xff0c;而Thread是一个类。这意味着我们可以通过实现Runnable接口来创建线程&#xff0c;或者直接继承Thread类并重写其方法。Runnable只包含一个ru…...

云音乐Android Cronet接入实践

背景 网易云音乐产品线终端类型广泛&#xff0c;除了移动端&#xff08;IOS/安卓&#xff09;之外&#xff0c;还有PC、MAC、Iot多终端等等。移动端由于上线时间早&#xff0c;用户基数大&#xff0c;沉淀了一些端侧相对比较稳定的网络策略和网络基础能力。然而由于各端在基础…...

Linux dup和dup2

Linux dup和dup2函数&#xff0c;他们有什么区别&#xff0c;什么场景下会用到&#xff0c;使用它们有什么注意事项 dup和dup2都是Linux系统中的系统调用&#xff0c;用于复制文件描述符。它们的主要区别在于如何指定新的文件描述符以及处理新文件描述符的方式。 dup函数 #i…...

Spring Boot实战 | 如何整合高性能数据库连接池HikariCP

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…...

Spring依赖注入

依赖注入底层原理流程图&#xff1a; https://www.processon.com/view/link/5f899fa5f346fb06e1d8f570 Spring中有两种依赖注入的方式 首先分两种&#xff1a; 手动注入自动注入 手动注入 在XML中定义Bean时&#xff0c;就是手动注入&#xff0c;因为是程序员手动给某个属…...

Linux下Jenkins自动化部署SpringBoot应用

Linux下Jenkins自动化部署SpringBoot应用 1、 Jenkins介绍 官方网址&#xff1a;https://www.jenkins.io/ 2、安装Jenkins 2.1 centos下命令行安装 访问官方&#xff0c;点击文档&#xff1a; 点击 Installing Jenkins&#xff1a; 点击 Linux&#xff1a; 选择 Red Hat/…...

【git 学习】--- ubuntu18.04 搭建本地git服务器

在Ubuntu18.04 上简单创建自己的git服务器~ 环境配置 Ubuntu: 18.04git服务器搭建步骤&#xff1a; ##1.安装git sudo apt-get install git##2.添加用户 sudo adduser test_git //test_git -- git用户名##3. 在Git用户的home目录下创建文件夹&#xff0c;作为裸仓库 sudo…...

JAVA电商平台免费搭建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城

涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …...

Android 13 Framework 裁剪

裁剪应用 1. 修改 build/core/product.mk 添加PRODUCT_DEL_PACKAGES变量的声明 新增一行_product_single_value_vars PRODUCT_DEL_PACKAGES # The first API level this product shipped with _product_single_value_vars PRODUCT_SHIPPING_API_LEVEL _product_single_val…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...