当前位置: 首页 > news >正文

【数据结构初阶】算法的时间复杂度和空间复杂度

算法的时间复杂度和空间复杂度

    • 1.算法效率
      • 1.1 如何衡量一个算法的好坏
      • 1.2 算法的复杂度
    • 2.时间复杂度
      • 2.1 时间复杂度的概念
      • 2.2 大O的渐进表示法
      • 2.3常见时间复杂度计算举例
    • 3.空间复杂度
    • 4. 常见复杂度对比

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){for (int j = 0; j < N; ++j){++count;}}for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

在这里插入图片描述
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例一:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

O(N)

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例二:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k){++count;}for (int k = 0; k < N; ++k){++count;}printf("%d\n", count);
}

O(N+M)

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
在这里插入图片描述

实例三:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

O(1)

实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
在这里插入图片描述

实例四:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );//str中查找一个字符串

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
在这里插入图片描述

实例五:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

O(N^2)

实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
坏,时间复杂度为 O(N^2)
在这里插入图片描述

实例六:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

O(logN)

实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
在这里插入图片描述
在这里插入图片描述

实例七:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

O(N)

实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
在这里插入图片描述
总结:递归算法时间复杂度是多次调用次数累加

实例八:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

实例8通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树讲解)
在这里插入图片描述
在这里插入图片描述
补:在这里插入图片描述

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

案例一:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例1使用了常数个额外空间(int n,int exchange,int end),所以空间复杂度为 O(1)

实列二:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)

实例三:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

在这里插入图片描述

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
时间一去不复返,空间可重复利用->了解函数栈帧

4. 常见复杂度对比

一般算法常见的复杂度如下
在这里插入图片描述
在这里插入图片描述

💘不知不觉,【数据结构初阶】算法的时间复杂度和空间复杂度以告一段落。通读全文的你肯定收获满满,让我们继续为数据结构学习共同奋进!!!

相关文章:

【数据结构初阶】算法的时间复杂度和空间复杂度

算法的时间复杂度和空间复杂度 1.算法效率1.1 如何衡量一个算法的好坏1.2 算法的复杂度 2.时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3常见时间复杂度计算举例 3.空间复杂度4. 常见复杂度对比 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢&am…...

git log 命令详解

测试仓库 asdf 常用参数 查询指定目录 git -C /Users/yanlp/workspace/asdf log 限制显示提交数量 git log -n 3 限制提交人|邮箱 git log --authorEdwin Kofler | git log --authoredwinkofler.dev 限制一个月内的提交git log --since1.month.ago | git log --since2023-0…...

docker运行elastic和kibana,并使用密码连接

1. elasticsearch 运行容器 docker run -d --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" elasticsearch:7.7.0 进入容器 docker exec -it elasticsearch bash修改配置开启密码校验 vi ./conf/elasticsearch.yml添加以下内容 …...

前端html生成PDF

需要用到的组件 1、html2canvas 地址&#xff1a;http://html2canvas.hertzen.com/ 安装&#xff1a;npm install --save html2canvas 2、jsPDF 地址&#xff1a;https://github.com/parallax/jsPDF 安装&#xff1a;npm install jspdf --save 代码 // 导出页面为PDF格式 im…...

通信算法之190: 频谱频移fftshift

...

强化学习代码实战(3) --- 寻找真我

前言 本文内容来自于南京大学郭宪老师在博文视点学院录制的视频&#xff0c;课程仅9元地址&#xff0c;配套书籍为深入浅出强化学习 编程实战 郭宪地址。 正文 我们发现多臂赌博机执行一个动作之后&#xff0c;无论是选择摇臂1&#xff0c;摇臂2&#xff0c;还是摇臂3之后都会返…...

SA+ST表维护height+单调队列维护:CF1073G

https://www.luogu.com.cn/problem/CF1073G lcp相关的&#xff0c;先跑个sa&#xff0c;然后height建个ST表 现在考虑询问&#xff0c;我们按A和B按 r k rk rk 排序。现在考虑B->A&#xff0c;反过来同理。 我们可以用单调队列维护&#xff0c;满足height是单增的。因为…...

Java中JVM、JRE和JDK三者有什么区别和联系?

任何语言或者软件的运行都需要环境。就像人要生活在空气中&#xff0c;鱼要活在水中&#xff0c;喜阴植物就不能放在阳光下暴晒一样&#xff0c;任何对象个体的存在都离不开其所需要的环境&#xff0c;编程语言亦是一样的。 java 语言的开发运行&#xff0c;也离不开 Java 语言…...

秋季期中考复现xj

flow analysis 1 What is the backdoor file name that comes with the server?( Including file suffix) 服务器自带的后门文件是什么&#xff1f;&#xff08;含文件后缀&#xff09; 题目还要求最后把那个文件名MD5一下&#xff0c;再去提交 开始的前三题是流量分析的&…...

【代码随想录】算法训练营 第十四天 第六章 二叉树 Part 1

递归遍历 递归法讲究的就是一个格式&#xff0c;在外边再定义一个用于递归求解的函数reverser&#xff0c;参数是递归的二叉树当前根节点和用于保存遍历得到的答案序列的vector容器&#xff1b; 函数中的格式就是&#xff0c;先写递归终止条件&#xff0c;也就是遍历的结点为…...

【访问控制】—>《熟练使用ACL进行上网行为管理》

✍ 标准和高级ACL功能介绍&#xff1b; ✍ 思科和华为ACL功能有什么区别&#xff1f; ✍ 现网中ACL都有哪些使用场景&#xff1f; -- ACL - 访问控制列表 - 控制&#xff1a; 能通/不能通 -- ACL - 结合功能 list - 简化版本的行为管理 -- 插件性质的功能 --…...

MySQL外键,表与表的关系,多表查询,Navicat软件

外键 MySQL可以使用外键来保持表之间的关系完整性。 要设置外键&#xff0c;可以按照以下步骤进行操作&#xff1a; 在创建表时&#xff0c;使用FOREIGN KEY关键字来指定外键列&#xff1a; CREATE TABLE table1 (id INT PRIMARY KEY,name VARCHAR(50),table2_id INT,FOREI…...

Linux系统镜像备忘

阿里镜像源&#xff1a; ubuntu ubuntu-releases安装包下载_开源镜像站-阿里云 centos centos-stream安装包下载_开源镜像站-阿里云...

Docker容器端口在主机的映射

Docker容器端口在主机的映射 Docker 允许你在启动容器时进行多个端口映射&#xff0c;以便将容器内部的端口映射到宿主机上的不同端口。你可以使用-p或--publish标志来指定端口映射。以下是一些示例&#xff0c;说明如何在 Docker 启动容器时进行多个端口映射&#xff1a; 映…...

Spring Boot中RedisTemplate的使用

当前Spring Boot的版本为2.7.6&#xff0c;在使用RedisTemplate之前我们需要在pom.xml中引入下述依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId><vers…...

GSCoolink GSV6183 带嵌入式MCU的MIPI D-PHY 转 DP/eDP

Gscoolink GSV6183是一款高性能、低功耗的MIPI D-PHY到DisplayPort/eDP 1.4转换器。通过集成基于RISC-V的增强型微控制器&#xff0c;GSV6183创造了一种具有成本效益的解决方案&#xff0c;提供了上市时间优势。MIPI D-PHY接收器支持CSI-2版本1.3和DSI版本1.3&#xff0c;每条通…...

Linux文件系统 struct dentry 结构体解析

文章目录 前言一、目录项简介二、struct dentry2.1 简介2.2 dentry和inode关联2.3 目录项视图2.4 目录项状态2.5 目录项特点 三、dentry cache3.1 简介3.2 dentry cache 初始化3.3 dentry cache 查看 四、dentry与mount、file的关联五、其他参考资料 前言 这两篇文章介绍了: V…...

C++——vector

目录 vector vector常用接口 构造函数 operator[]size() 迭代器 范围for capacity() resize() reverse() push_back和pop_back insert erase() algorithm::sort 注意 迭代器失效 vector vector单词直译是向量的意思&#xff0c;这个容器可以容纳不同的类型数据&am…...

html5语义化标签

目录 前言 什么是语义化标签 常见的语义化标签 语义化的好处 前言 HTML5 的设计目的是为了在移动设备上支持多媒体。之前网页如果想嵌入视频音频&#xff0c;需要用到 flash &#xff0c;但是苹果设备是不支持 flash 的&#xff0c;所以为了改变这一现状&#xff0c;html5 …...

SQL Server批量删除数据库中的表

如果想要删除数据库中temp 开头的中间表 1. SQL 语句实现 use [DBName] --todo go select drop table name from sys.tables where name like temp% go 将查询结果粘贴到数据库中运行 2. 数据库 单击目标数据库中的Tables ,然后按F7 键&#xff0c;按Name 进行排序&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...