当前位置: 首页 > news >正文

Educational Codeforces Round 143 (Rated for Div. 2)

Educational Codeforces Round 143 (Rated for Div. 2)

D. Triangle Coloring

思路:

  1. 每个环都需要取最大值,那么我们讨论一个环获得最大值选的两条边的可能取法:              显然:如果三边相等,这个环有3种取法。如果有两条小边相等,这个环有两种取法。其余情况都只能取一种
  2. 之后把每个环都看成一个点,就是从n个环选n/2个蓝色(红色),求组合数。
  3. 所以其实就是考逆元乘法逆元(费马小定理,拓欧,线性dp)
#include <bits/stdc++.h>
using namespace std;
#define ll     long long
#define int ll
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
typedef pair<int, int> pii;//double 型memset最大127,最小128
//std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int INF = 0x3f3f3f3f;         //int型的INF
const ll llINF = 0x3f3f3f3f3f3f3f3f;//ll型的llINF
const int N = 2e5 + 10;
const int mod = 998244353;
int a[3];ll fastmi(ll base, ll power)//快速幂求逆元
{ll ans = 1;while (power){if (power & 1)ans = ans * base % mod;base = base * base % mod;power >>= 1;}return ans;
}int32_t main()
{std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);int n;cin >> n;//n从表示一个点转化为表示一个环n /= 3;ll ans = 1;for (int i = 1; i <= n; ++i){cin >> a[0] >> a[1] >> a[2];//3点一个环sort(a, a + 3);//if (a[0] == a[2])ans = (ans * 3) % mod;//else if (a[0] == a[1])ans = (ans * 2) % mod;}ll tmp = 1;for (int i = 1; i <= n / 2; ++i)//求组合数C(n/2,n){ans = (ans * (n / 2 + i)) % mod;tmp = tmp * i % mod;}ans = (ans * fastmi(tmp, mod - 2)) % mod;cout << ans << endl;return 0;
}

E. Explosions?

思路:

  1. 我们枚举每个点作为爆炸点,显然,爆炸连续的前提就是左边生命值严格单调增,右边严格单调减。
  2. 由于我们需要消耗的生命值总和是恒定的,所以,那个点爆炸造成总伤害高,显然耗费魔法值更少
  3. 我们考虑爆炸时左边(右边)的邻居(j)与爆炸点(x)的大小关系(a[i]表示生命值,l[i]表示i对左边可以造成的伤害和(包括炸死自己)):
    1. 会发现,如果a[j]>=a[x]-1,是无法爆炸的,不过,我们可以用单位魔法把j生命值变为a[x]-1,所以无影响
    2. 所以对于x左边任意点j,如果a[j]>=a[x]-(x-j),我们可以用单位魔法操作到其生命值为a[x]-(x-j)。
    3. 对于a[j]<a[x]-(x-j),那我们下一次爆炸的威力就减少了,而且我们发现,后续产生的伤害等于l[j],所以我们加上l[j]就不用再往左了
    4. 因此,我们得出,每次求l[x],只需要找到第一个点j满足a[j]<a[x]-(x-j),那么                    l[x]=(x-j)*(a[x]+(a[x]-(x-j)+1)/2+l[j]
    5. 然而,每个点都回溯太费时间了,我们中间那些不满足a[j]<a[x]-(x-j)的点j只要没用一次就一直没用,我们能不能舍去他,为这个数组减肥呢。
    6. 观察发现,不等式可以表示为a[j]-j<a[x]-x,所以我们可以另开一个数组记录这个信息。然后从左往右遍历,每次求当前点l[x],只需要把a[j]-j>=a[x]-x的前面点舍去,最后就可以立刻求取答案,显然,舍去这个功能让我们想到可以开一个栈(先进后出)
    7. 爆炸右边也是同理
#include <bits/stdc++.h>
using namespace std;
#define ll     long long
#define int ll
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
typedef pair<int, int> pii;//double 型memset最大127,最小128
//std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int INF = 0x3f3f3f3f;         //int型的INF
const ll llINF = 0x3f3f3f3f3f3f3f3f;//ll型的llINF
const int N = 3e5 + 10;
int a[N], l[N], r[N], a1[N], n;void cnt(int *f)
{stack<int>s;s.push(0);//放入左边边界外面0for (int i = 1; i <= n; ++i)a1[i] = a[i] - i; //记录比较数组for (int i = 1; i <= n; ++i){while ((int)s.size() > 1 && a1[s.top()] >= a1[i])s.pop(); //从最靠近右边的点(堆顶)开始比较,不满足的点全部舍去,后面也没用了int len = min(a[i], (ll)i - s.top()); //爆炸可持续范围最长是a[i](伤害不断递减),不是直接取遇到满足条件的j点(你可能到不了那个点)f[i] = f[s.top()] + len * (2 * a[i] - len + 1) / 2;s.push(i);//不断给栈存入新的点}
}int32_t main()
{std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);int t;cin >> t;while (t--){cin >> n;ll sum = 0;for (int i = 1; i <= n; ++i)cin >> a[i], sum += a[i];cnt(l);reverse(a + 1, a + 1 + n); //反转一下求右边爆炸cnt(r);reverse(r + 1, r + 1 + n); //r获得的是反转过的,要反转回来reverse(a + 1, a + 1 + n);ll ans = 0;for (int i = 1; i <= n; ++i)ans = max(ans, l[i] + r[i] - 2 * a[i]); //l与r都记录了a[i]造成的伤害,然而这个伤害是魔法产生的,不是被波及的cout << sum - ans << endl;}return 0;
}

相关文章:

Educational Codeforces Round 143 (Rated for Div. 2)

Educational Codeforces Round 143 (Rated for Div. 2) D. Triangle Coloring 思路&#xff1a; 每个环都需要取最大值&#xff0c;那么我们讨论一个环获得最大值选的两条边的可能取法&#xff1a; 显然&#xff1a;如果三边相等&#xff0c;这个环有3种取法。如…...

业务代码编写过程中如何「优雅的」配置隔离

思考 不同的处理方式 1.常规的处理方式&#xff0c;通过某种规则判断区分代码环境 // 获取环境标识 const env getCurrentEnv();if (env dev) {// do something } else if (env test) {// do something } else if (env prod) {// do something } 分析&#xff1a; 1.此种…...

English Learning - L2-2 英音地道语音语调 2023.02.23 周四

English Learning - L2-2 英音地道语音语调 2023.02.23 周四查音标的工具怎么练习效果好准备工作大小声练习大元音开口度的对比舌位对比复习后元音 /ɑː/ /ɔː/ /uː//ɑː//ɔː//uː/前元音 /iː/发音技巧对应单词的发音对应句子的发音常见的字母组合中元音 /ɜː/发音技巧…...

java:线程等待与唤醒 - Object的wait()和notify()

java&#xff1a;线程等待与唤醒 - Object的wait()和notify() 1 前言 java使用Object类的wait()和notify()方法&#xff0c;可以实现线程等待和唤醒&#xff08;Object类为所有类的父类&#xff0c;即所有类天然具有线程等待和唤醒的方法&#xff0c;一般使用Object类的wait(…...

实现弹窗功能并修改其中一个系数

把鼠标放在number-info上面,会是一个delon/chart的类库,可以在NG-ALAIN上找到阅读NG ALAIN的图表,以及number-info样式,数据文本 它拥有[title] [subtitle]两个可以是TemplateRef类型的,而template可以在里面放一些东西,比如按钮,所以可以放一个修改按钮 这里刚开始把template放…...

vue-draggable浏览器拖拽event事件对象拖动时 DragEvent path undefined

场景&#xff1a; 在做组件拖拽过程中&#xff0c;需要获取到触发元素冒泡过程中的所有元素&#xff0c;所以使用了event.path属性。在Chrome下正常运行&#xff0c;但是在FireFox下测试时发现&#xff0c;完犊子&#xff0c;失效了&#xff0c;通过问题排查&#xff0c;发现了…...

【云原生】搭建k8s高可用集群—20230225

文章目录多master&#xff08;高可用&#xff09;介绍高可用集群使用技术介绍搭建高可用k8s集群步骤1. 准备环境-系统初始化2. 在所有master节点上部署keepalived3.1 安装相关包3.2 配置master节点3.3 部署haproxy错误解决3. 所有节点安装Docker/kubeadm/kubelet4. 部署Kuberne…...

LeetCode121_121. 买卖股票的最佳时机

LeetCode121_121. 买卖股票的最佳时机 一、描述 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最…...

收割不易,五面Alibaba终拿Java岗offer

前言 前段时间有幸被阿里的一位同学内推&#xff0c;参加了阿里巴巴Java岗位的面试&#xff0c;本人19年双非本科软件工程专业&#xff0c;目前有一年半的工作经验&#xff0c;面试前就职于一家外包公司。如果在自己本人拿到offer之前&#xff0c;如果有人告诉我一年工作经验可…...

【离线数仓-4-数据仓库设计-分层规划构建流程】

离线数仓-4-数据仓库设计-分层规划&构建流程离线数仓-4-数据仓库设计-分层规划&构建流程1.数据仓库分层规划2.数据仓库构建流程1.数据调研1.业务调研2.需求分析3.总结2.明确数据域3.构建业务总线矩阵&维度模型设计4.明确统计指标1.指标体系相关概念1.原子指标2.派生…...

SQL零基础入门学习(十一)

SQL零基础入门学习&#xff08;十&#xff09; SQL NOT NULL 约束 NOT NULL 约束强制列不接受 NULL 值。 NOT NULL 约束强制字段始终包含值。这意味着&#xff0c;如果不向字段添加值&#xff0c;就无法插入新记录或者更新记录。 下面的 SQL 强制 “ID” 列、 “LastName” …...

排序基础之插入排序

目录 前言 一、什么是插入排序 二、实现插入排序 三、插入排序优化 四、插入排序的特性 前言 上一篇中我们说到了《排序基础之选择排序》&#xff0c;这一篇我们来学习一下排序算法中的另一种基础排序算法——插入排序。 一、什么是插入排序 简单来说就是&#xff1a;每…...

LabVIEW控制DO通道输出一个精确定时的数字波形

LabVIEW控制DO通道输出一个精确定时的数字波形如何使用数据采集板卡的DO通道输出一个精确定时的数字波形&#xff1f;解答:产生一个数字波形首先需要创建一个布尔数组&#xff0c;把波形序列信息放到该布尔数组中&#xff0c;然后通过一个布尔数组至数字转换vi来产生数字波形。…...

openpnp - 零碎记录

文章目录openpnp - 零碎记录概述笔记配置文件保存无效必须在查找问题之后, 才能保存配置文件如果想找出配置动作引起的配置内容变化, 还是要尝试保存后, 比对变化才行ENDopenpnp - 零碎记录 概述 这段时间, 正在配置校准手头的openpnp设备, 用的官网最新的openpnp2.0. 由于o…...

Qt编写微信支付宝支付

文章目录一 微信支付配置参数二 支付宝支付配置参数三 功能四 Demo效果图五 体验地址一 微信支付配置参数 微信支付API&#xff0c;需要三个基本必填参数。 微信公众号或者小程序等的appid&#xff1b;微信支付商户号mchId&#xff1b;微信支付商户密钥mchKey&#xff1b; 具…...

LeetCode 剑指 Offer 64. 求1+2+…+n

求 12…n &#xff0c;要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句&#xff08;A?B:C&#xff09;。 示例 1&#xff1a; 输入: n 3 输出: 6 限制&#xff1a; 1 < n < 10000 解法一&#xff1a;利用逻辑运算符的短路&#xf…...

Mapper代理开发

MyBatis快速开发https://blog.csdn.net/weixin_51882166/article/details/129204439?spm1001.2014.3001.5501 使用Mapper代理方式完成 定义与SQL映射文件同名的Mapper接口 &#xff0c;将Mapper接口和SQL映射文件放置同一目录结构 新建接口和包&#xff1a; 将Mapper接口和…...

为什么在连接mysql时,设置 SetConnMaxIdleTime 没有作用

目录测试1go 1.15.15go 1.17.12测试2go 1.15.15go 1.17.12参考在使用golang 连接 mysql时&#xff0c;为了节省连接资源&#xff0c;在连接使用过后&#xff0c;希望在指定长度时间不再使用后&#xff0c;自动关闭连接。 这时&#xff0c;经常会使用SetConnMaxLifetime()&#…...

嵌入式开发利器

前言 俗话说&#xff0c;工欲善其事必先利其器&#xff0c;做嵌入式开发首先需要选择好的工具&#xff0c;对的工具&#xff0c;工具选对了能事半功倍&#xff0c;节省很多时间&#xff0c;那些开发大佬一般都会使用各种各样的工具&#xff0c;不同的环节使用不同的工具&#…...

Qt 的QString类的使用

Qt的QString类提供了很方便的对字符串操作的接口。 使某个字符填满字符串&#xff0c;也就是说字符串里的所有字符都有等长度的ch来代替。 QString::fill ( QChar ch, int size -1 ) 例&#xff1a; QString str "Berlin";str.fill(z);// str "zzzzzz"…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

2025-05-08-deepseek本地化部署

title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek&#xff1a;小白也能轻松搞定&#xff01; 如何给本地部署的 DeepSeek 投喂数据&#xff0c;让他更懂你 [实验目的]&#xff1a;理解系统架构与原…...