当前位置: 首页 > news >正文

Python OpenCV剪裁图片并修改对应的Labelme标注文件

Python OpenCV剪裁图片并修改对应的Labelme标注文件

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 剪裁图片并修改对应的Labelme标注文件
    • 代码实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
  • OpenCV用C++语言编写,它具有C++、Python、Java和MATLAB接口,并支持Windows、Linux、Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令。

实验环境

  • Python 3.x (面向对象的高级语言)

剪裁图片并修改对应的Labelme标注文件

  • 背景:某些场景下,获取到的已经标注的图片数据,有黑色边框,本文目的则是,将图片数据的黑色边框剔除掉,并同步修改已标注的图片数据对应的Labelme标注文件,方便后续使用。
  • 项目结构
    这里是引用

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

代码实现

import os
import cv2
import json
import numpy as npdef xyxy2xywh(rect):'''(x1,y1,x2,y2) -> (x,y,w,h)'''return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]def xywh2xyxy(rect):'''(x,y,w,h) -> (x1,y1,x2,y2)'''return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]def xyxy2xminyminxmaxymax(rect):xmin = min(rect[0],rect[2])ymin = min(rect[1],rect[3])xmax = max(rect[0],rect[2])ymax = max(rect[1],rect[3])return [xmin,ymin,xmax,ymax]def alter_json(img_name,in_json_path,out_json_path,crop_x,crop_y,crop_height,crop_width,pad):'''in_json_path: json文件输入路径out_json_path: json文件保存路径crop_x : 剪裁矩阵坐标的xcrop_y : 剪裁矩阵坐标的ycrop_height: 剪裁后的高crop_width: 剪裁后的宽pad: 图片填充数'''file_in = open(in_json_path, "r", encoding='utf-8')# json.load数据到变量json_datajson_data = json.load(file_in)# 修改json中的内容json_data["imageHeight"] = crop_heightjson_data["imageWidth"] = crop_width + 2*padjson_data["imagePath"] = img_namejson_data["imageData"] = None# 读取原始jsons的 [[x1,y1],[x2,y2]]for LabelBox in json_data['shapes']:points = LabelBox['points']points[0][0] = points[0][0] - crop_x + padpoints[0][1] =points[0][1] - crop_y points[1][0] = points[1][0] - crop_x + padpoints[1][1] = points[1][1] - crop_y file_in.close()# 创建一个写文件file_out = open(out_json_path, "w", encoding='utf-8')# 将修改后的数据写入文件file_out.write(json.dumps(json_data))file_out.close()# 图像显示函数
def show(name, img):cv2.namedWindow(name, 0)  # 用来创建指定名称的窗口,0表示CV_WINDOW_NORMAL# cv2.resizeWindow(name, img.shape[1], img.shape[0]); # 设置宽高大小为640*480cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()def crop_largest_img(image):'''参数:image 是彩色图像数组。'''# 转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化_, binary = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY)# show('binary',binary)# 查找轮廓contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)'''retval = cv2.boundingRect( cnt )参数:cnt 是灰度图像或轮廓。返回值:retval 表示返回的矩形边界的左上角顶点的坐标值及矩形边界的宽度和高度,即x,y,w,h'''for cnt in contours:x,y,w,h = cv2.boundingRect(cnt) # 获取轮廓顶点及边长if w*h<600*600: # 过滤掉小于600*600的矩形框continue# print(x,y,w,h) # 570 126 1039 728 左上角x 左上角y 框宽 框高# cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),10) # xmin,ymin,xmax,ymax# show('image',image)return x,y,w,hif __name__=="__main__":# 输出图片所在文件夹out_imgs_dir  = 'out_images/'# 输出jsons所在文件夹out_jsons_dir = 'out_jsons/'if not os.path.exists(out_imgs_dir):os.mkdir(out_imgs_dir)if not os.path.exists(out_jsons_dir):os.mkdir(out_jsons_dir)# 输入图片所在文件夹in_imgs_dir  = 'images/'# 输入jsons所在文件夹in_jsons_dir = 'jsons/'# 输入图片名列表file_name_list = os.listdir(in_imgs_dir)img_name_list = [i for i in file_name_list if i.endswith('.png')]# 输入jsons文件名列表file_name_list = os.listdir(in_jsons_dir)json_name_list = [i for i in file_name_list if i.endswith('.json')]# print(img_name_list,json_name_list)# 定义剪裁图片的左右填充数pad = 0for img_name,json_name in zip(img_name_list,json_name_list):in_img_path = os.path.join(in_imgs_dir,img_name)out_img_path = os.path.join(out_imgs_dir,img_name)in_json_path = os.path.join(in_jsons_dir,json_name)out_jsons_path = os.path.join(out_jsons_dir,json_name)# print(in_img_path,in_json_path)# 读取图片image = cv2.imread(in_img_path)# 获得最大剪裁矩形坐标(x,y,w,h)x,y,w,h = crop_largest_img(image)# print(x,y,w,h)# 读取并修改json文件alter_json(img_name,in_json_path,out_jsons_path,x,y,h,w,pad=pad)# 保存剪裁图片crop_img = image[y:y+h,x-pad:x+w+pad] # h,wcv2.imwrite(out_img_path,crop_img)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关文章:

Python OpenCV剪裁图片并修改对应的Labelme标注文件

Python OpenCV剪裁图片并修改对应的Labelme标注文件 前言前提条件相关介绍实验环境剪裁图片并修改对应的Labelme标注文件代码实现 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&#xff0c;可点击进入Python日常小操作专栏、OpenCV-P…...

【JAVA学习笔记】44 - 注解,元注解

项目代码 一、注解的引入 1)注解(Annotation)也被称为元数据(Metadata),用于修饰解释包、类、方法、属性、构造器、局部变量等数据信息。 2)和注释一样&#xff0c;注解不影响程序逻辑&#xff0c;但注解可以被编译或运行&#xff0c;相当于嵌入在代码中的补充信息。 3)在Ja…...

Android 安卓Kotlin-协程

当谈到现代异步编程时&#xff0c;Kotlin协程&#xff08;Kotlin Coroutines&#xff09;是一个备受欢迎的工具。它提供了一种更具可读性和可维护性的方式来处理异步任务&#xff0c;而无需陷入回调地狱。本篇博客将深入探讨Kotlin协程&#xff0c;涵盖其基本概念、用法、特性以…...

SSO 系统设计_token 生成

SSO 系统设计_token 生成 目录概述需求&#xff1a; 设计思路实现思路分析1.增加依赖2.代码编写3.测试 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wai…...

电表安数大小和省电有关吗?

电表的安数是指电表能够正常工作的电流范围&#xff0c;通常用来表示电表的容量。电表的安数越大&#xff0c;表示电表能够承受的电流就越大。电表的安数与省电之间并没有直接的关系&#xff0c;但是电表的安数大小会影响到电表的准确性和稳定性。如果电表的安数太小&#xff0…...

树上形态改变统计贡献:1025T4

http://cplusoj.com/d/senior/p/SS231025D 答案为 ∑ w [ x ] − w [ s o n [ x ] ] \sum w[x]-w[son[x]] ∑w[x]−w[son[x]]&#xff0c; x x x 非儿子 要维护断边&#xff0c;LCT固然可以&#xff0c;但不一定需要 发现如果发生了变化&#xff0c;只会由重儿子变成次重儿子…...

如何处理与智能床相关的医疗建议和医疗器械证明?

如何处理与智能床相关的医疗建议和医疗器械证明&#xff1f; 摘要&#xff1a;作为一名iOS技术博主&#xff0c;我遇到了一个困扰&#xff0c;我的应用在审核中被拒绝了。这次拒绝涉及到我们公司生产的智能床&#xff0c;该床收集用户的体征数据并提供睡眠建议。苹果指出我们未…...

云原生之深入解析如何合并多个kubeconfig文件

项目通常有多个 k8s 集群环境&#xff0c;dev、testing、staging、prod&#xff0c;kubetcl 在多个环境中切换&#xff0c;操作集群 Pod 等资源对象&#xff0c;前提条件是将这三个环境的配置信息都写到本地机的 $HOME/.kube/config 文件中。默认情况下kubectl会查找$HOME/.kub…...

Netty实战-实现自己的通讯框架

通信框架功能设计 功能描述 通信框架承载了业务内部各模块之间的消息交互和服务调用&#xff0c;它的主要功能如下&#xff1a; 基于 Netty 的 NIO 通信框架&#xff0c;提供高性能的异步通信能力&#xff1b;提供消息的编解码框架&#xff0c;可以实现 POJO 的序列化和反序…...

S4.2.4.3 Electrical Idle Sequence(EIOS)

一 本章节主讲知识点 1.1 EIOS的具体码型 1.2 EIOS的识别规则 1.3 EIEOS的具体码型 二 本章节原文翻译 当某种状态下&#xff0c;发送器想要进入电器空闲状态的时候&#xff0c;发送器必须发送EIOSQ&#xff0c;也既是&#xff1a;电器Electrical Idle Odered Set Sequenc…...

MySQL的优化利器:索引条件下推,千万数据下性能提升273%

MySQL的优化利器&#xff1a;索引条件下推&#xff0c;千万数据下性能提升273%&#x1f680; 前言 上个阶段&#xff0c;我们聊过MySQL中字段类型的选择&#xff0c;感叹不同类型在千万数据下的性能差异 时间类型&#xff1a;MySQL字段的时间类型该如何选择&#xff1f;千万…...

回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测

回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-BiLSTM贝叶斯优化双向长…...

SOCKS5代理在全球电商、游戏及网络爬虫领域的技术创新

随着全球化进程的加速&#xff0c;跨界电商和游戏行业的出海战略愈发重要。在这个大背景下&#xff0c;技术如SOCKS5代理和网络爬虫成为连接不同领域、优化用户体验和提升市场竞争力的重要桥梁。本文将深入探讨SOCKS5代理技术在跨界电商、游戏和网络爬虫领域的应用及其对行业发…...

Flutter extended_image库设置内存缓存区大小与缓存图片数

ExtendedImage ExtendedImage 是一个Flutter库&#xff0c;用于提供高级图片加载和显示功能。这个库使用了 image 包来进行图片的加载和缓存。如果你想修改缓存大小&#xff0c;你可以通过修改ImageCache的配置来实现。 1. 获取ImageCache实例: 你可以通过PaintingBinding…...

第2篇 机器学习基础 —(1)机器学习概念和方式

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。机器学习是一种人工智能的分支&#xff0c;它使用算法和数学模型来使计算机系统能够从经验数据中学习和改进&#xff0c;而无需显式地编程。机器学习的目标是通过从数据中发现模式和规律&#xff0c;从而使计算机能够自动进…...

LiveGBS流媒体平台GB/T28181常见问题-海康大华宇视硬件NVR摄像头通道0未获取到视频通道如何排查如何抓包分析

LiveGBS常见问题海康大华宇视硬件NVR摄像头通道0未获取到视频通道如何排查如何抓包分析&#xff1f; 1、硬件NVR配置接入示例2、通道数为0处置2.1、判断信令是否畅通2.1.1、点击更新通道2.1.2、有成功提示2.1.2.1、确认设备的视频通道编码是否填写2.1.2.2、确认是否超过授权数目…...

在项目中同时使用SpringCloud和Dubbo,注册中心选用Eureka?

文章目录 一、前置知识1、在Spring Boot中使用Dubbo&#xff1f;1&#xff09;配置服务提供者2&#xff09;配置服务消费者 2、在Spring Boot中使用Eureka&#xff1f;1&#xff09;Eureka服务2&#xff09;Eureka客户端 二、项目代码分析1、dubbo服务提供者1&#xff09;启动类…...

蓝凌EIS智慧协同平台saveImg接口任意文件上传漏洞复现 [附POC]

文章目录 蓝凌EIS智慧协同平台saveImg接口任意文件上传漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 蓝凌EIS智慧协同平台saveImg接口任意文件上传漏洞复现 [附POC] 0x01 前言 免责声明&…...

【好书推荐】《用户画像:平台构建与业务实践》

作者简介&#xff1a; 懒大王敲代码&#xff0c;正在学习嵌入式方向有关课程stm32&#xff0c;网络编程&#xff0c;数据结构,C/C等 哈喽&#xff01;各位铁汁们大家好啊&#xff0c;今天给大家推荐的的是机械工业出版社的 《用户画像&#xff1a;平台构建与业务实践》这本书&a…...

JavaScript进阶 第二天笔记

JavaScript 进阶 - 第2天 了解面向对象编程的基础概念及构造函数的作用&#xff0c;体会 JavaScript 一切皆对象的语言特征&#xff0c;掌握常见的对象属性和方法的使用。 了解面向对象编程中的一般概念能够基于构造函数创建对象理解 JavaScript 中一切皆对象的语言特征理解引用…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...