【ARM AMBA Q_Channel 详细介绍】
文章目录
- 1.1 Q_Channel 概述
- 1.2 Q-Channel
- 1.2.1 Q-Channel 接口
- 1.2.2 Q-Channel 接口的握手状态
- 1.2.3 握手信号规则
- 1.3 P_Channel的握手协议
- 1.3.1 device 接受 PMU 的 power 请求
- 1.3.2 device 拒绝 PMU 的 power 请求
- 1.4 device 复位信号与 Q _Channel 的结合
- 1.4.1 RESETn 复位无效时 QREQn 为低
- 1.4.2 RESETn 复位有效时 QREQn为高
- 1.5 QACTIVE
- 1.5.1 请求上电和请求下电
- 1.5.2 PMU不允许断电
- 1.6 Q_Channel的实现
- 1.7 Q_Channel的向后兼容
转自:http://www.lujun.org.cn/?p=3634
如有侵权,联系删除
1.1 Q_Channel 概述
AMBA提供了,低功耗的接口。用于实现power控制功能。目前,AMBA里面,包含2种低功耗接口。
- Q-Channel:实现简单的power控制,如上电,下电;
- P-Channel:实现复杂的power控制,如全上电,半上电,1/4上电等。
ARM引入这2种低功耗接口,是为了满足不同的应用场景下,对power的控制。
在一些场景下,组件只有两种 power状态,分别为 power-up,power-down。因此对这种组件的power控制,只需要对其上电,断电即可。用Q-Channel,即可实现。
而在另外的场景下,组件拥有多种power状态,比如全上电,半上电,1/4上电等。因此对这种组件的power控制,就要复杂很多,不能简单的对其上电,断电即可,还需要额外的一些控制。此时,用Q-Channel,就不合适了,需要使用P-Channel。
比如在 DynamlQ 技术中,引入了L3 cache,并且每个core拥有自己的 L1 cache,L2 cache,这样,整个系统中,cache的容量就变大了,相应的,消耗在cache上的功耗,也增多了。此时,就需要复杂的对cache的power控制,来实现低功耗,比如对L3 cache,1/4上电,也就是只有1/4的L3 cache工作,其余的都断电,以此来节省功耗。此时,就要用到P-Channel。
1.2 Q-Channel
Q-Channel是从AXI的低功耗接口中,演变过来。但是可以向后兼容。
1.2.1 Q-Channel 接口
以下是Q-Channel的接口:
分为 Device 端和 Power Controller 端(下文均简称为PMU)。
- Device 端,就是需要被电源控制的组件,比如 core,外设等;
- PMU端,就是提供电源管理的组件。
在 Q-Channel 中,将 device 的 power状态,分成了2 种:
- operational 状态: device处于工作状态,简单理解为上电状态,下文称为上电状态
- quiescent状态:device处于停止状态,简单理解为断电状态,下文称为断电状态
Q-channel 的接口信号很简单,只有四根,如下图所示(n代表低电平有效):
signals | Description |
---|---|
QACTIVE | 提供给device,向 power controller 发送power请求,更改自己的 power 状态
|
QREQn | power controller 发送 power 请求信号
|
QACCEPTn | 为高,表示 device 接受外部 power 请求 |
QDENY | 为高,表示 device 拒绝外部 power 请求 |
设备端可以通过QACTIVE信号告诉控制器端自己的工作状态,QACTIVE为0时表示设备处于静止状态。但是,控制器端既可以根据QACTIVE 发出请求 QREQn,也可以根据其它的条件发出请求。也就是说控制器并不完全依赖于 QACTIVE。所以我们可以看到 Q-channel 的握手协议其实不依赖 QACTIVE。
对于QACTIVE信号,设备端需要有拉高QACTIVE信号的能力。再通俗一点,当设备处于时钟关断或者电源关断的状态下,需要有能力告诉控制器,自己需要启动了。如果设备没有这种能力,那就需要在系统级来做一些工作保证设备可以再运转。总之一句话,做设计的时候一定要避免设备睡下就再也起不来这种情况。
1.2.2 Q-Channel 接口的握手状态
ARM 对 Q-Channel 的 interface,定义了几种握手状态:
State | Description |
---|---|
Q_RUN | device 处于上电状态 |
Q_REQUEST | device 处于上电状态,但是在 idle 状态时,可以接收 power request,进入断电状态 |
Q_STOPPED | device 进入了断电状态 |
Q_EXIT | 等待被提供时钟或者 power 的状态。当 device 得到外部提供的时钟或者 power 时,将 QACCEPTn 拉高,进入 Q_RUN 状态。 |
Q_DENIED | device 拒绝外部 power 的请求,不进入断电状态,而保持上电状态 |
Q_CONTINUE | PMU 在 Q_DENIED 状态后,将 QREQn 拉高后的状态 |
以下是编码:
下图是各个握手状态的切换:
1.2.3 握手信号规则
对于握手信号,有以下的规则:
-
QREQn 只能在 QACCEPTn 为高并且 QDENY 为低时,才可以从高变为低;
-
QREQn 满足以下条件,才可以从低变为高:
- QACCEPTn 和 QDENY 都为低;
- QACCEPTn 和 QDENY 都为高。
-
QACCEPTn 只能在 QREQn 和 QDENY 都为低情况下,才可以从高变为低;
-
QACCEPTn 只能在 QREQn 和 QDENY 都为高情况下,才可以从低变为高;
-
QDENY 只能在 QREQn 和 QACCEPTn 都为高情况下,才可以从高变为低;
-
QDENY 只能在 QREQn 为低并且 QACCEPTn 为高情况下,才可以从低变为高。
上面的这些原则,在设计P-Channel时,需要遵守的
1.3 P_Channel的握手协议
1.3.1 device 接受 PMU 的 power 请求
以下是握手协议时序图:
- 在T1,QREQn 和 QACCEPTn 为高,Q_Channel 进入 Q_RUN 状态;
- 在T2,QREQn 为低,PMU 请求 device 进入断电状态,然后等待外设响应,此时 Q_Channel 进入Q_REQUEST 状态;
- 在T3,QACCEPTn 为低,表示 device 接收 PMU 的请求,将自己进入断电状态。此时 Q_Channel 进入Q_STOPPED 状态;
- 在T4,QREQn 为高,PMU请求 device 进入上电状态,然后等待外设响应。此时 Q_Channel 进入Q_EXIT 状态;
- 在T5,QACCEPTn 为高,表示 device 接收 PMU 的请求,将自己进入上电状态。此时Q_Channel进入Q_RUN状 态。
1.3.2 device 拒绝 PMU 的 power 请求
当外部 PMU 给 device 发送 power 请求,device 可以拒绝该 power 请求。PMU 收到 device 的拒绝响应后,应取消该 power 请求。
- 在T1,QREQn 和 QACCEPTn 为高,Q_Channel 进入 Q_RUN 状态;
- 在T2,QREQn 为低,PMU 请求 device 进入断电状态,然后等待外设响应,此时 Q_Channel 进入 Q_REQUEST 状态;
- 在T3,QDENY 为高,表示device拒绝PMU的请求,自己保持上电状态。此时 Q_Channel 进入 Q_DENIED 状态;
- 在T4,PMU 接收到 device 的拒绝响应,将 QREQn 拉高,PMU 请求 device 进入上电状态,然后等待外设响应。此时Q_Channel进入 Q_CONTINUE 状态;
- 在T5,QDENY 为低,表示 device 接收 PMU 的上电请求,将自己保持上电状态。此时 Q_Channel 进入 Q_RUN 状态。
1.4 device 复位信号与 Q _Channel 的结合
复位信号,需要和 Q_Channel 的信号,进行组合。一般来说,复位信号,也会由PMU来控制,组合分为下节 2 种情况。
1.4.1 RESETn 复位无效时 QREQn 为低
- T2时刻,RESETn为高,复位取消。
- T3时刻,QREQn为高,PMU向device请求上电。Q_Channel进入Q_EXIT状态。
- T4时刻,QACCEPTn为高,device接受PMU的上电请求。Q_Channel进入Q_RUN状态。
- T5时刻,QREQn为低,PMU向device请求断电,Q_Channel进入Q_REQUEST状态。
- T6时刻,QACCEPTn为低,device接受PMU的断电请求。Q_Channel进入Q_STOPPED。
- T7时刻,将RESETn拉低。
1.4.2 RESETn 复位有效时 QREQn为高
-
T2时刻,QREQn拉高,PMU向device请求上电。Q_Channel进入Q_EXIT状态。
-
T3时刻,因为RESETn为低,复位有效,device将QACCEPTn保持为低,Q_Channel保持Q_EXIT状态。
-
T4时刻,因为RESETn为高,复位无效。device将QACCEPTn拉低,响应PMU的上电请求。Q_Channel进入Q_RUN状态。
-
T5时刻,QREQn拉低,PMU向device请求断电,Q_Channel进入Q_REQUEST状态。
-
T6时刻,device将QACCEPTn拉低,响应PMU的断电请求。Q_Channel进入Q_STOPPED状态。
-
T7时刻,RESETn拉低。
1.5 QACTIVE
QACTIVE,是提供给device,给PMU发送power请求的信号。可以由多个来源的组合。如果为高,那么PMU要给自己上电,并且之后,不能给自己断电。
QACTIVE 和握手信号(QREQn,QACCEPTn,QDENY)是独立开的。
1.5.1 请求上电和请求下电
- T1时刻,device将QACTIVE拉高,向PMU发起退出断电请求;
- T2时刻,PMU将QREQn拉高,Q_Channel进入Q_EXIT状态;
- T3时刻,进入Q_RUN状态;
- T4时刻,device将QACTIVE拉低,device向PMU发起进入断电请求;
- T5时刻,PMU将QREQn拉低,Q_Channel进入Q_REQUEST状态;
- T6时刻,进入Q_STOPPED状态。
1.5.2 PMU不允许断电
- T1 时刻,device 将 QACTIVE 拉高,向 PMU 发起上电请求;
- T2 时刻,PMU 将 QREQn 拉高,Q_Channel进入Q_EXIT状态;
- T3 时刻,进入Q_RUN 状态。之后,device 处于上电状态;
- T4 时刻,PMU 将 QREQn 拉低,PMU 想让 device 进入断电状态,但是 QACTIVE 为高,表示 device 要一直处于上电状态。因此QACCEPTn 持续保持高,Q_Channel 一直维持在 Q_REQUEST 状态。device 维持在上电状态;
- T5 时刻,因为之前 QACTIVE 拉低,device 想进入断电状态,device 将 QACCEPTn 拉低,响应 PMU 的断电请求,然后Q_Channel 进入 Q_STOPPED 状态。device 进入断点状态。
1.6 Q_Channel的实现
一般来说,device和PMU的时钟是异步时钟。因此,需要一些同步化。
下图是同步化的框图:
ARM 提供了以下的一些实现指导:
-
被使用的所有信号,都需要进行同步化;
-
只有当Q_Channel进入Q_STOPPED状态是,才可以将时钟和power给关掉;
-
为了保证握手信号的正确性,QREQn,QACCEPTn,QDENY需要使用寄存器直接输出;
-
QACTIVE使用寄存器直接输出,或者是相关寄存器输出的组合输出。ARM强烈建议组合输出,使用或门。
1.7 Q_Channel的向后兼容
Q_Channel是从AXI的低功耗结构,演化过来。但是Q_Channel也可以兼容AXI的低功耗接口。
如下图,device使用AXI的低功耗接口,PMU使用Q_Channel。只需要按照如下的连接进行连接即可。
如下图,device使用Q_Channel,PMU使用AXI的低功耗接口,只需要按照如下的连接进行连接即可。
相关文章:

【ARM AMBA Q_Channel 详细介绍】
文章目录 1.1 Q_Channel 概述1.2 Q-Channel1.2.1 Q-Channel 接口1.2.2 Q-Channel 接口的握手状态1.2.3 握手信号规则 1.3 P_Channel的握手协议1.3.1 device 接受 PMU 的 power 请求1.3.2 device 拒绝 PMU 的 power 请求 1.4 device 复位信号与 Q _Channel 的结合1.4.1 RESETn 复…...

PDF Reader Pro v2.9.8(pdf编辑阅读器)
PDF Reader Pro是一款PDF阅读和编辑软件,具有以下特点: 界面设计简洁,易于上手。软件界面直观清晰,用户可以轻松浏览文档,编辑注释和填写表单。功能强大,提供了多种PDF处理工具,包括阅读、注释…...
【机器学习可解释性】1.模型洞察的价值
机器学习可解释性 1.模型洞察的价值2.排列的重要性3.部分图表4.SHAP Value5.SHAP Value 高级使用 正文 前言 本文是 kaggle上机器学习可解释性课程,共五部分,除第一部分介绍外,每部分包括辅导和练习。 此为第一部分,原文链接 如…...

网络安全保险行业面临的挑战与变革
保险业内大多数资产类别的数据可以追溯到几个世纪以前;然而,网络安全保险业仍处于初级阶段。由于勒索软件攻击、高度复杂的黑客和昂贵的数据泄漏事件不断增加,许多网络安全保险提供商开始感到害怕继续承保更多业务。 保险行业 根据最近的路…...
如何提高系统的可用性/高可用
提高系统可用性常用的一些方法,有缓存、异步、重试、幂等、补偿、熔断、降级、限流。 缓存 缓存的速度,比数据库快很多,添加缓存是简单有效的做法。 注意缓存与数据库的一致性,数据表记录变更时记得处理缓存。 Redis缓存的示例&…...
PCA和LDA数据降维计算(含数学例子推导过程)
PCA算法和LDA算法可以用于对数据进行降维,例如可以把一个2维的数据降低维度到一维,本文通过举例子来对PCA算法和LDA算法的计算过程进行教学展示。 PCA算法计算过程(文字版,想看具体计算下面有例子) 1.将原始数据排列成n行m列的矩阵…...

题目 1053: 二级C语言-平均值计算(python详解)——练气三层初期
✨博主:命运之光 🦄专栏:算法修炼之练气篇(C\C版) 🍓专栏:算法修炼之筑基篇(C\C版) 🍒专栏:算法修炼之练气篇(Python版) ✨…...

Python —— UI自动化之Page Object模式
1、Page Object模式简介 1、二层模型 Page Object Model(页面对象模型), 或者也可称之为POM。在UI自动化测试广泛使用的一种分层设计 模式。核心是通过页面层封装所有的页面元素及操作,测试用例层通过调用页面层操作组装业务逻辑。 1、实战 …...

职能篇—自动驾驶产品经理
自动驾驶产品开发流程 在讲自动驾驶产品经理之前,先简单了解一下自动驾驶的开发体系。如上图所示,从产品需求开始,经由系统需求、系统架构、软件需求、软件架构,最终分解到软件代码实现模块,再经由MIL、SIL、HIL、VIL完…...

ubuntu安装golang
看版本:https://go.dev/dl/ 下载: wget https://go.dev/dl/go1.21.3.linux-amd64.tar.gz卸载已有的go,可以apt remove go,也可以which go之后删除那个go文件,然后: rm -rf /usr/local/go && tar…...
ES 8 新特性
1. async 和 await async 和 await 两种语法结合可以让异步代码像同步代码一样。(即:看起来是同步的,实质上是异步的。) 先从字面意思理解,async 意为异步,可以用于声明一个函数前,该函数是异步的。await 意为等待,即等待一个异步方法完成。 1.1 async async 声明(…...

linux-防火墙
目录 一、防火墙概念 1.软件防火墙 2.iptables默认规则 3.iptables的五链 4.iptables动作 5.四表五链 6.iptables实例 一、防火墙概念 linux下防火墙一般分为软件防火墙、硬件防火墙 硬件防火墙:在硬件的级别实现防火墙过滤功能,性能高…...

Pytorch--3.使用CNN和LSTM对数据进行预测
这个系列前面的文章我们学会了使用全连接层来做简单的回归任务,但是在现实情况里,我们不仅需要做回归,可能还需要做预测工作。同时,我们的数据可能在时空上有着联系,但是简单的全连接层并不能满足我们的需求࿰…...
爬虫进阶-反爬破解9(下游业务如何使用爬取到的数据+数据和文件的存储方式)
一、下游业务如何使用爬取到的数据 (一)常用数据存储方案 1.百万级别数据:单机数据库,搭建和使用方便快捷,成本低 2.千万级别数据:负载均衡的多台数据库,安全和稳定 3.海量数据:…...
Docker常用应用部署
Docker常用应用部署 一、Ubuntu系统Docker快速安装 Docker官网安装文档:https://docs.docker.com/engine/install/ubuntu/ # 文本处理的流编辑器 -i直接修改读取的文件内容,而不是输出到终端 # sed -i s/原字符串/新字符串/ /home/1.txt # 下面这个是修…...

【数据分享】2014-2022年我国淘宝村点位数据(Excel格式/Shp格式)
电子商务是过去一二十年我国发展最快的行业,其中又以淘宝为代表,淘宝的发展壮大带动了一大批服务淘宝电子商务的村庄,这些村庄被称为淘宝村! 截至到目前,阿里研究院梳理并公布了2014-2022年共9个年份的淘宝村名单&…...

Ubuntu 安装 docker-compose
在Ubuntu上安装Docker Compose,可以按照以下步骤进行操作: 下载 Docker Compose 二进制文件 sudo curl -L "https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker…...
vue2、vue3中路由守卫变化
什么是路由守卫? 路由守卫就是路由跳转的一些验证,比如登录鉴权(没有登录不能进入个人中心页)等等等 路由守卫分为三大类: 全局守卫:前置守卫:beforeEach 后置钩子:afterEach 单个…...

Leetcode—547.省份数量【中等】
2023每日刷题(八) Leetcode—547.省份数量 实现代码 static int father[210] {0};int Find(int x) {if(x ! father[x]) {father[x] Find(father[x]);}return father[x]; }void Union(int x, int y) {int a Find(x);int b Find(y);if(a ! b) {fathe…...

Nginx 防盗链
nginx防盗链问题 盗链: 就是a网站有一张照片,b网站引用了a网站的照片 。 防盗链: a网站通过设置禁止b网站引用a网站的照片。 nginx防止网站资源被盗用模块 ngx_http_referer_module 如何区分哪些是不正常的用户? HTTP Referer…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...

小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...