自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例
自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例
在matlab中有自带的离散傅里叶变换程序,即fft程序,但该程序是封装的,无法看到源码。为了比较清楚的了解matlab自带的实现过程,本文通过自建程序实现matlab程序,并与matlab自带的fft进行比较计算。
一、离散傅里叶变换的计算公式
在计算离散傅里叶变换的时候,通常会用到:
{ X ( k ) = ∑ n = 1 N [ x ( n ) ⋅ exp ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N ) ] s . t . { 1 ≤ k ≤ N } (1) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^N {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{N})]} \\s.t.\{ 1 \le k \le N\} \end{array} \right. \tag1 ⎩ ⎨ ⎧X(k)=n=1∑N[x(n)⋅exp(−i⋅2πN(k−1)(n−1))]s.t.{1≤k≤N}(1)进行求解。
但有时会遇到所求解的向量长度N和变换过程中的长度K,大小不同。此时,会遇到 N ≤ K N\le K N≤K的情况,和N>K的两种情况。
(1) 当 N ≤ K N\le K N≤K时,则需要对向量 x x x补零后,再离散傅里叶变换计算。计算公式为:
{ X ( k ) = ∑ n = 1 N p a d d e d [ x ( n ) ⋅ exp ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N p a d d e d ) ] s . t . { 1 ≤ k ≤ N p a d d e d } (2) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^{{N_{padded}}} {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{{{N_{padded}}}})]} \\s.t.\{ 1 \le k \le {N_{padded}}\} \end{array} \right. \tag2 ⎩ ⎨ ⎧X(k)=n=1∑Npadded[x(n)⋅exp(−i⋅2πNpadded(k−1)(n−1))]s.t.{1≤k≤Npadded}(2)
易知: N ≤ N p a d d e d = K N \le {N_{padded}}=K N≤Npadded=K.
(2) 当N>K时,,则需要对向量 x x x截断后,再离散傅里叶变换计算。计算公式为:
{ X ( k ) = ∑ n = 1 N t r u n c a t e d [ x ( n ) ⋅ exp ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N t r u n c a t e d ) ] s . t . { 1 ≤ k ≤ N t r u n c a t e d } (3) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^{{N_{truncated}}} {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{{{N_{truncated}}}})]} \\s.t.\{ 1 \le k \le {N_{truncated}}\} \end{array} \right. \tag3 ⎩ ⎨ ⎧X(k)=n=1∑Ntruncated[x(n)⋅exp(−i⋅2πNtruncated(k−1)(n−1))]s.t.{1≤k≤Ntruncated}(3)
易知: N > N t r u n c a t e d = K N > {N_{truncated}}=K N>Ntruncated=K.
二、基于上述理论编写myfft函数(matlab编程)
将自建的离散傅里叶变换的函数命名为myfft,编写程序如下:
function X=myfft(x,K)
% myfft函数根据傅里叶变换公式编写的离散傅里叶变换程序
% 输入
% x:向量x
% K: 变换后的向量X的长度% 输出
% X: 经过傅里叶变换得到的向量% 变换依据:
% 对于长度为N的输入向量x,其离散傅里叶变换是长度为N的向量X,其具有元素:
% N
% X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
% n=1
% myfft(x,K) 是一个K点的FFT,如果x小于K点,则补零后进行傅里叶变换;如果x大于K点,则截断后傅里叶变换。% by zddh and zsm
% 2023.10.24N=length(x)%% 1.如果x小于K点,补零运算
if N<=Kx_padded=[x,zeros(1,K-N)]; %补零N_padded=length(x_padded); %补零后的长度X=zeros(1,N_padded);
for k=1:Kfor n=1:N_paddedtemp1=x_padded(n)*exp(-i*2*pi*(k-1)*(n-1)/N_padded);X(k)=X(k)+temp1;end
end
%% 2.如果x大于K点,则截断计算
elsewarning('K值小于N,则截断后进行傅里叶变换')
x_truncated=x(1:K);
N_truncated=length(x_truncated);
X=zeros(1,N_truncated)
for k=1:Kfor n=1:N_truncatedtemp2=x_truncated(n)*exp(-i*2*pi*(k-1)*(n-1)/N_truncated);X(k)=X(k)+temp2;end
end
end
三、自建的函数和matlab自带函数比较举例
(1) 编写程序
clc
clear all
close all
%% 1.构造将要变换的向量
dt=0.1
t=0:dt:10*pi;
x=sin(t)
N=length(x);
figure(1)
plot(t,x,'lineWidth',2)%% 2.自建的离散傅里叶变换求解
K=200
X=myfft(x,K)
%% 3.matlab自带函数求解
X0=fft(x,K)%% 4.比较
D_value=X-X0;figure(2)
subplot(211)
plot(abs(X),'LineWidth',2)
hold on
plot(abs(X0),'LineWidth',2)
legend('myfft','matlabfft')
title('自建myfft和matlab自带函数fft比较')subplot(212)
plot(abs(D_value),'LineWidth',2)
title('|X-X0|')
(2)运行结果
图1 生成的x向量
图2 使用两种方法结果
通过对图2两个子图观察比较可知,本文所编写的myfft函数和matlab自带的fft函数之间的误差非常小,在 1 0 − 12 10^{-12} 10−12量级,同时验证了程序的理论公式(1)、(2)和(3).
相关文章:

自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例
自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例 在matlab中有自带的离散傅里叶变换程序,即fft程序,但该程序是封装的,无法看到源码。为了比较清楚的了解matlab自带的实现过程,本文通过自建程序实现matlab程序&…...

Vue图片路径问题(动态引入)
vue项目中我们经常会遇到动态路径的图片无法显示的问题,以下是静态路径和动态路径的常见使用方法。 1.静态路径 在日常的开发中,图片的静态路径通过相对路径和绝对路径的方式引入。 相对路径:以.开头的,例如./、../之类的。就是…...

项目部署Linux步骤
1、最小化安装centos7-环境准备 安装epel-release 安装epel-release,因为有些rpm包在官方库中找不到。前提是保证可以联网 yum install -y epel-release 修改IP net-tools net-tool:工具包集合,包含ifconfig等命令 yum install -y net-…...

UG\NX二次开发 在资源栏(左侧面板)中添加按钮
文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 感谢粉丝订阅 感谢 apolloryd 订阅本专栏,非常感谢。 简介 UG\NX二次开发 在资源栏(左侧面板)中添加按钮,下面提供了帮助说明,在 UGOPEN 文件夹下有示例。 C++语言在UG二次…...

Proteus仿真--量程自动切换数字电压表(仿真+程序)
本文主要介绍基于51单片机的量程自动切换数字电压表Proteus仿真设计(完整仿真源文件及代码见文末链接) 简介 硬件电路主要分为单片机主控模块、AD转换模块、量程选择模块以及数码管显示模块 (1)单片机主控模块:单片…...

如何使用ArcGIS Pro制作一张地形图
01数据来源 本教程所使用的数据是从水经微图中下载的DEM数据,除了DEM数据,常见的GIS数据都可以从水经微图中下载,你可以通过关注“水经注GIS”,然后在后台回复“微图”即可获取软件下载地址,当然也可以直接在水经注…...
人工智能三要数之算法Transformer
1. 人工智能三要数之算法Transformer 人工智能的三个要素是算法、数据和计算资源。Transformer 模型作为一种机器学习算法,可以应用于人工智能系统中的数据处理和建模任务。 算法: Transformer 是一种基于自注意力机制的神经网络模型,用于处理序列数据的…...
Java ThreadPoolExecutor 线程池
import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.ArrayBlockingQueue;public class ThreadPoolExample {public static void main(String[] args) {// 创建线程池对象ThreadPoolExecutor threadPool new…...

网络协议--IP选路
9.1 引言 选路是IP最重要的功能之一。图9-1是IP层处理过程的简单流程。需要进行选路的数据报可以由本地主机产生,也可以由其他主机产生。在后一种情况下,主机必须配置成一个路由器,否则通过网络接口接收到的数据报,如果目的地址不…...

使用udevil自动挂载U盘或者USB移动硬盘
最近在折腾用树莓派(实际上是平替香橙派orangepi zero3)搭建共享文件服务器,有一个问题很重要,如何在系统启动时自动挂载USB移动硬盘。 1 使用/etc/fstab 最开始尝试了用/etc/fstab文件下增加:"/dev/sda1 /home/orangepi/s…...

学习笔记二十二:K8s控制器Replicaset
K8s控制器Replicaset Replicaset控制器:概念、原理解读Replicaset概述Replicaset工作原理:如何管理PodReplicaset控制器三个组成部分 Replicaset资源清单文件编写技巧Replicaset使用案例:部署Guestbook留言板编写一个ReplicaSet资源清单资源清…...
2023-10-25 精神分析-领悟新技术的错误做法-持续数年的错误做法-记录与分析
摘要: 过去数年对于领悟技术, 采取的做法不能说是对达到目的毫无裨益,但是对突破技术和将技术融为自身这个目的来说, 没有达到。 而且随着时间的流逝, 过去已经熟悉的技术, 竟然会被忘掉!就像是没有涉猎过一样! 根本原因出在对技术的领悟的…...
Arrays 中的 asList()方法
public static <T> List<T> asList( T . . . a ){ return new ArrayList<>(a); } 返回由指定数组支持的固定大小的 list集合。对数组所做的更改将在返回的 l…...

基于自动化工具autox.js的抢票(猫眼)
1.看到朋友圈抢周杰伦、林俊杰演唱会票贼难信息,特研究了一段时间,用autox.js写了自动化抢票脚本,购票页面自动点击下单(仅限安卓手机)。 2.脚本运行图 3.前期准备工作 (1)autox.js社区官网:AutoX.js (2)b站上学习资料:10分钟学会AutoX.js hello world_哔哩哔哩_bi…...
Java架构师内功计算机网络
目录 1 导学2 网络功能和分类3 OSI七层模型3.1 局域网和广域网协议4 TCP/IP协议5 通信技术和交换技术5.1 通信技术5.2 交换技术5.2.1 路由技术5.2.2 传输介质6 通信方式和交换方式7 IP地址7.1 IP地址表示7.2 子网划分8 IPv69 网络规划与设计10 网络存储技术10.1 廉价磁盘几余阵…...
vue 中 mixin 和 mixins 区别
目录 前言 用法 全局Mixin 局部Mixin 代码 理解 高质量的Mixin使用 在Vue.js框架中,Mixin是一种非常重要和强大的功能,它允许开发者创建可复用的代码片段,并将其应用到一个或多个组件中。Vue提供了两种方式来使用Mixin,分别…...

reqable(小黄鸟)+雷电抓包安卓APP
x 下载证书保存到雷电模拟器根目录(安装位置) 为什么? Android7以上,系统允许每个应用可以定义自己的可信CA集,部分的应用默认只会信任系统预装的CA证书,而不会信任用户安装的证书,之前的方法安装Burp/Fiddler证书都是用户证书…...

高等数学啃书汇总重难点(七)微分方程
同济高数上册的最后一章,总的来说,这篇章内容依旧是偏记忆为主,说难不难说简单不简单: 简单的是题型比较死,基本上就是记公式,不会出现不定积分一般花样繁多的情况;然而也就是背公式并不是想的…...

阿里云对象存储OSS文件无法预览,Bucket设置了Referer
您发起的请求头中没有Referer字段或Referer字段为空,与请求Bucket设置的防盗链策略不相符。 解决方案 您可以选择以下任意方案解决该问题。 在请求中增加Referer请求头。 GET /test.txt HTTP/1.1 Date: Tue, 20 Dec 2022 08:48:18 GMT Host: BucketName.oss-examp…...

数字孪生技术:工业数字化转型的引擎
数字孪生是一种将物理实体数字化为虚拟模型的技术,这些虚拟模型与其物理对应物相互关联。这种虚拟模型通常是在数字平台上创建的,它们复制了实际设备、工厂、甚至整个供应链的运作方式。这使工业企业能够实现以下益处: 1. 实时监测和分析 数…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...