当前位置: 首页 > news >正文

自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例

自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例

在matlab中有自带的离散傅里叶变换程序,即fft程序,但该程序是封装的,无法看到源码。为了比较清楚的了解matlab自带的实现过程,本文通过自建程序实现matlab程序,并与matlab自带的fft进行比较计算。

一、离散傅里叶变换的计算公式

在计算离散傅里叶变换的时候,通常会用到:
{ X ( k ) = ∑ n = 1 N [ x ( n ) ⋅ exp ⁡ ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N ) ] s . t . { 1 ≤ k ≤ N } (1) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^N {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{N})]} \\s.t.\{ 1 \le k \le N\} \end{array} \right. \tag1 X(k)=n=1N[x(n)exp(i2πN(k1)(n1))]s.t.{1kN}(1)进行求解。
但有时会遇到所求解的向量长度N和变换过程中的长度K,大小不同。此时,会遇到 N ≤ K N\le K NK的情况,和N>K的两种情况。

(1) 当 N ≤ K N\le K NK时,则需要对向量 x x x补零后,再离散傅里叶变换计算。计算公式为:

{ X ( k ) = ∑ n = 1 N p a d d e d [ x ( n ) ⋅ exp ⁡ ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N p a d d e d ) ] s . t . { 1 ≤ k ≤ N p a d d e d } (2) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^{{N_{padded}}} {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{{{N_{padded}}}})]} \\s.t.\{ 1 \le k \le {N_{padded}}\} \end{array} \right. \tag2 X(k)=n=1Npadded[x(n)exp(i2πNpadded(k1)(n1))]s.t.{1kNpadded}(2)
易知: N ≤ N p a d d e d = K N \le {N_{padded}}=K NNpadded=K.

(2) 当N>K时,,则需要对向量 x x x截断后,再离散傅里叶变换计算。计算公式为:

{ X ( k ) = ∑ n = 1 N t r u n c a t e d [ x ( n ) ⋅ exp ⁡ ( − i ⋅ 2 π ( k − 1 ) ( n − 1 ) N t r u n c a t e d ) ] s . t . { 1 ≤ k ≤ N t r u n c a t e d } (3) \left\{ \begin{array}{l}X(k) = \sum\limits_{n = 1}^{{N_{truncated}}} {[x(n) \cdot \exp ( - i \cdot 2\pi \frac{{(k - 1)(n - 1)}}{{{N_{truncated}}}})]} \\s.t.\{ 1 \le k \le {N_{truncated}}\} \end{array} \right. \tag3 X(k)=n=1Ntruncated[x(n)exp(i2πNtruncated(k1)(n1))]s.t.{1kNtruncated}(3)
易知: N > N t r u n c a t e d = K N > {N_{truncated}}=K N>Ntruncated=K.

二、基于上述理论编写myfft函数(matlab编程)

将自建的离散傅里叶变换的函数命名为myfft,编写程序如下:

function X=myfft(x,K)
% myfft函数根据傅里叶变换公式编写的离散傅里叶变换程序
% 输入
%     x:向量x
%     K: 变换后的向量X的长度% 输出
%    X: 经过傅里叶变换得到的向量% 变换依据:
% 对于长度为N的输入向量x,其离散傅里叶变换是长度为N的向量X,其具有元素:
%                    N
%      X(k) =       sum  x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
%                   n=1
%  myfft(x,K) 是一个K点的FFT,如果x小于K点,则补零后进行傅里叶变换;如果x大于K点,则截断后傅里叶变换。%  by zddh and zsm
%  2023.10.24N=length(x)%% 1.如果x小于K点,补零运算
if N<=Kx_padded=[x,zeros(1,K-N)];   %补零N_padded=length(x_padded);   %补零后的长度X=zeros(1,N_padded);         
for k=1:Kfor n=1:N_paddedtemp1=x_padded(n)*exp(-i*2*pi*(k-1)*(n-1)/N_padded);X(k)=X(k)+temp1;end
end
%% 2.如果x大于K点,则截断计算
elsewarning('K值小于N,则截断后进行傅里叶变换')
x_truncated=x(1:K);
N_truncated=length(x_truncated);
X=zeros(1,N_truncated)
for k=1:Kfor n=1:N_truncatedtemp2=x_truncated(n)*exp(-i*2*pi*(k-1)*(n-1)/N_truncated);X(k)=X(k)+temp2;end
end
end

三、自建的函数和matlab自带函数比较举例

(1) 编写程序

clc
clear all
close all
%% 1.构造将要变换的向量
dt=0.1
t=0:dt:10*pi;
x=sin(t)
N=length(x);
figure(1)
plot(t,x,'lineWidth',2)%% 2.自建的离散傅里叶变换求解
K=200
X=myfft(x,K)
%% 3.matlab自带函数求解
X0=fft(x,K)%% 4.比较
D_value=X-X0;figure(2)
subplot(211)
plot(abs(X),'LineWidth',2)
hold on
plot(abs(X0),'LineWidth',2)
legend('myfft','matlabfft')
title('自建myfft和matlab自带函数fft比较')subplot(212)
plot(abs(D_value),'LineWidth',2)
title('|X-X0|')

(2)运行结果

图1 生成的x向量
图1 生成的x向量

图2 使用两种方法结果比较
图2 使用两种方法结果
通过对图2两个子图观察比较可知,本文所编写的myfft函数和matlab自带的fft函数之间的误差非常小,在 1 0 − 12 10^{-12} 1012量级,同时验证了程序的理论公式(1)、(2)和(3).

相关文章:

自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例

自建的离散傅里叶变换matlab程序实现及其与matlab自带函数比较举例 在matlab中有自带的离散傅里叶变换程序&#xff0c;即fft程序&#xff0c;但该程序是封装的&#xff0c;无法看到源码。为了比较清楚的了解matlab自带的实现过程&#xff0c;本文通过自建程序实现matlab程序&…...

Vue图片路径问题(动态引入)

vue项目中我们经常会遇到动态路径的图片无法显示的问题&#xff0c;以下是静态路径和动态路径的常见使用方法。 1.静态路径 在日常的开发中&#xff0c;图片的静态路径通过相对路径和绝对路径的方式引入。 相对路径&#xff1a;以.开头的&#xff0c;例如./、../之类的。就是…...

项目部署Linux步骤

1、最小化安装centos7-环境准备 安装epel-release 安装epel-release&#xff0c;因为有些rpm包在官方库中找不到。前提是保证可以联网 yum install -y epel-release 修改IP net-tools net-tool&#xff1a;工具包集合&#xff0c;包含ifconfig等命令 yum install -y net-…...

UG\NX二次开发 在资源栏(左侧面板)中添加按钮

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 感谢粉丝订阅 感谢 apolloryd 订阅本专栏,非常感谢。 简介 UG\NX二次开发 在资源栏(左侧面板)中添加按钮,下面提供了帮助说明,在 UGOPEN 文件夹下有示例。 C++语言在UG二次…...

Proteus仿真--量程自动切换数字电压表(仿真+程序)

本文主要介绍基于51单片机的量程自动切换数字电压表Proteus仿真设计&#xff08;完整仿真源文件及代码见文末链接&#xff09; 简介 硬件电路主要分为单片机主控模块、AD转换模块、量程选择模块以及数码管显示模块 &#xff08;1&#xff09;单片机主控模块&#xff1a;单片…...

​如何使用ArcGIS Pro制作一张地形图

01数据来源 本教程所使用的数据是从水经微图中下载的DEM数据&#xff0c;除了DEM数据&#xff0c;常见的GIS数据都可以从水经微图中下载&#xff0c;你可以通过关注“水经注GIS”&#xff0c;然后在后台回复“微图”即可获取软件下载地址&#xff0c;当然也可以直接在水经注…...

人工智能三要数之算法Transformer

1. 人工智能三要数之算法Transformer 人工智能的三个要素是算法、数据和计算资源。Transformer 模型作为一种机器学习算法&#xff0c;可以应用于人工智能系统中的数据处理和建模任务。 算法: Transformer 是一种基于自注意力机制的神经网络模型&#xff0c;用于处理序列数据的…...

Java ThreadPoolExecutor 线程池

import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.ArrayBlockingQueue;public class ThreadPoolExample {public static void main(String[] args) {// 创建线程池对象ThreadPoolExecutor threadPool new…...

网络协议--IP选路

9.1 引言 选路是IP最重要的功能之一。图9-1是IP层处理过程的简单流程。需要进行选路的数据报可以由本地主机产生&#xff0c;也可以由其他主机产生。在后一种情况下&#xff0c;主机必须配置成一个路由器&#xff0c;否则通过网络接口接收到的数据报&#xff0c;如果目的地址不…...

使用udevil自动挂载U盘或者USB移动硬盘

最近在折腾用树莓派&#xff08;实际上是平替香橙派orangepi zero3&#xff09;搭建共享文件服务器&#xff0c;有一个问题很重要&#xff0c;如何在系统启动时自动挂载USB移动硬盘。 1 使用/etc/fstab 最开始尝试了用/etc/fstab文件下增加:"/dev/sda1 /home/orangepi/s…...

学习笔记二十二:K8s控制器Replicaset

K8s控制器Replicaset Replicaset控制器&#xff1a;概念、原理解读Replicaset概述Replicaset工作原理&#xff1a;如何管理PodReplicaset控制器三个组成部分 Replicaset资源清单文件编写技巧Replicaset使用案例&#xff1a;部署Guestbook留言板编写一个ReplicaSet资源清单资源清…...

2023-10-25 精神分析-领悟新技术的错误做法-持续数年的错误做法-记录与分析

摘要: 过去数年对于领悟技术, 采取的做法不能说是对达到目的毫无裨益&#xff0c;但是对突破技术和将技术融为自身这个目的来说, 没有达到。 而且随着时间的流逝, 过去已经熟悉的技术, 竟然会被忘掉&#xff01;就像是没有涉猎过一样&#xff01; 根本原因出在对技术的领悟的…...

Arrays 中的 asList()方法

public static <T> List<T> asList&#xff08; T . . . a &#xff09;{ return new ArrayList<>&#xff08;a&#xff09;&#xff1b; } 返回由指定数组支持的固定大小的 list集合。对数组所做的更改将在返回的 l…...

基于自动化工具autox.js的抢票(猫眼)

1.看到朋友圈抢周杰伦、林俊杰演唱会票贼难信息,特研究了一段时间,用autox.js写了自动化抢票脚本,购票页面自动点击下单(仅限安卓手机)。 2.脚本运行图 3.前期准备工作 (1)autox.js社区官网:AutoX.js (2)b站上学习资料:10分钟学会AutoX.js hello world_哔哩哔哩_bi…...

Java架构师内功计算机网络

目录 1 导学2 网络功能和分类3 OSI七层模型3.1 局域网和广域网协议4 TCP/IP协议5 通信技术和交换技术5.1 通信技术5.2 交换技术5.2.1 路由技术5.2.2 传输介质6 通信方式和交换方式7 IP地址7.1 IP地址表示7.2 子网划分8 IPv69 网络规划与设计10 网络存储技术10.1 廉价磁盘几余阵…...

vue 中 mixin 和 mixins 区别

目录 前言 用法 全局Mixin 局部Mixin 代码 理解 高质量的Mixin使用 在Vue.js框架中&#xff0c;Mixin是一种非常重要和强大的功能&#xff0c;它允许开发者创建可复用的代码片段&#xff0c;并将其应用到一个或多个组件中。Vue提供了两种方式来使用Mixin&#xff0c;分别…...

reqable(小黄鸟)+雷电抓包安卓APP

x 下载证书保存到雷电模拟器根目录(安装位置) 为什么? Android7以上&#xff0c;系统允许每个应用可以定义自己的可信CA集&#xff0c;部分的应用默认只会信任系统预装的CA证书&#xff0c;而不会信任用户安装的证书&#xff0c;之前的方法安装Burp/Fiddler证书都是用户证书…...

高等数学啃书汇总重难点(七)微分方程

同济高数上册的最后一章&#xff0c;总的来说&#xff0c;这篇章内容依旧是偏记忆为主&#xff0c;说难不难说简单不简单&#xff1a; 简单的是题型比较死&#xff0c;基本上就是记公式&#xff0c;不会出现不定积分一般花样繁多的情况&#xff1b;然而也就是背公式并不是想的…...

阿里云对象存储OSS文件无法预览,Bucket设置了Referer

您发起的请求头中没有Referer字段或Referer字段为空&#xff0c;与请求Bucket设置的防盗链策略不相符。 解决方案 您可以选择以下任意方案解决该问题。 在请求中增加Referer请求头。 GET /test.txt HTTP/1.1 Date: Tue, 20 Dec 2022 08:48:18 GMT Host: BucketName.oss-examp…...

数字孪生技术:工业数字化转型的引擎

数字孪生是一种将物理实体数字化为虚拟模型的技术&#xff0c;这些虚拟模型与其物理对应物相互关联。这种虚拟模型通常是在数字平台上创建的&#xff0c;它们复制了实际设备、工厂、甚至整个供应链的运作方式。这使工业企业能够实现以下益处&#xff1a; 1. 实时监测和分析 数…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...