python pandas.DataFrame 直接写入Clickhouse
import pandas as pd
import sqlalchemy
from clickhouse_sqlalchemy import Table, engines
from sqlalchemy import create_engine, MetaData, Column
import urllib.parsehost = '1.1.1.1'
user = 'default'
password = 'default'
db = 'test'
port = 8123 # http连接端口
engine = create_engine('clickhouse://{user}:{password}@{host}:{port}/{db}'.format(user = user,host = host,password = urllib.parse.quote_plus(password),db = db,port = port),pool_size = 30,max_overflow = 0,pool_pre_ping=True , pool_recycle= 3600)
port = 9000 # Tcp/Ip连接端口
engine1 = create_engine('clickhouse+native://{user}:{password}@{host}:{port}/{db}'.format(user = user,host = host,password = urllib.parse.quote_plus(password),db = db,port = port),pool_size = 30,max_overflow = 0,pool_pre_ping=True , pool_recycle=3600)# https://github.com/xzkostyan/clickhouse-sqlalchemy/issues/129
# 参考文档https://github.com/xzkostyan/clickhouse-sqlalchemy
# pip install sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple
# pip install clickhouse-sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simpleclass ClickhouseDf(object):def __init__(self, **kwargs):self.engines_dict = {"MergeTree": engines.MergeTree,"AggregatingMergeTree": engines.AggregatingMergeTree,"GraphiteMergeTree": engines.GraphiteMergeTree,"CollapsingMergeTree": engines.CollapsingMergeTree,"VersionedCollapsingMergeTree": engines.VersionedCollapsingMergeTree,"SummingMergeTree": engines.SummingMergeTree,"ReplacingMergeTree": engines.ReplacingMergeTree,"Distributed": engines.Distributed,"ReplicatedMergeTree": engines.ReplicatedMergeTree,"ReplicatedAggregatingMergeTree": engines.ReplicatedAggregatingMergeTree,"ReplicatedCollapsingMergeTree": engines.ReplicatedCollapsingMergeTree,"ReplicatedVersionedCollapsingMergeTree": engines.ReplicatedVersionedCollapsingMergeTree,"ReplicatedReplacingMergeTree": engines.ReplicatedReplacingMergeTree,"ReplicatedSummingMergeTree": engines.ReplicatedSummingMergeTree,"View": engines.View,"MaterializedView": engines.MaterializedView,"Buffer": engines.Buffer,"TinyLog": engines.TinyLog,"Log": engines.Log,"Memory": engines.Memory,"Null": engines.Null,"File": engines.File}self.table_engine = kwargs.get("table_engine", "MergeTree") # 默认引擎选择if self.table_engine not in self.engines_dict.keys():raise ValueError("No engine for this table")def _createORMTable(self, df, name, con, schema, **kwargs):col_dtype_dict = {"object": sqlalchemy.Text,"int64": sqlalchemy.Integer,"int32": sqlalchemy.Integer,"int16": sqlalchemy.Integer,"int8": sqlalchemy.Integer,"int": sqlalchemy.Integer,"float64": sqlalchemy.Float,"float32": sqlalchemy.Float,"float16": sqlalchemy.Float,"float8": sqlalchemy.Float,"float": sqlalchemy.Float,}primary_key = kwargs.get("primary_key", [])df_col = df.columns.tolist()metadata = MetaData(bind=con, schema=schema)_table_check_col = []for col in df_col:col_dtype = str(df.dtypes[col])if col_dtype not in col_dtype_dict.keys():if col in primary_key:_table_check_col.append(Column(col, col_dtype_dict["object"], primary_key=True))else:_table_check_col.append(Column(col, col_dtype_dict["object"]))else:if col in primary_key:_table_check_col.append(Column(col, col_dtype_dict[col_dtype], primary_key=True))else:_table_check_col.append(Column(col, col_dtype_dict[col_dtype]))_table_check = Table(name, metadata,*_table_check_col,self.engines_dict[self.table_engine](primary_key=primary_key))return _table_checkdef _checkTable(self, name, con, schema):sql_str = f"EXISTS {schema}.{name}"if con.execute(sql_str).fetchall() == [(0,)]:return 0else:return 1def to_sql(self, df, name: str, con, schema=None, if_exists="fail",**kwargs):'''将DataFrame格式数据插入Clickhouse中{'fail', 'replace', 'append'}, default 'fail''''if self.table_engine in ["MergeTree"]: # 表格必须有主键的引擎列表-暂时只用这种,其他未测试self.primary_key = kwargs.get("primary_key", [df.columns.tolist()[0]])else:self.primary_key = kwargs.get("primary_key", [])orm_table = self._createORMTable(df, name, con, schema, primary_key=self.primary_key)tanle_exeit = self._checkTable(name, con, schema)# 创建表if if_exists == "fail":if tanle_exeit:raise ValueError(f"table already exists :{name} ")else:orm_table.create()if if_exists == "replace":if tanle_exeit:orm_table.drop()orm_table.create()else:orm_table.create()if if_exists == "append":if not tanle_exeit:orm_table.create()# http连接下会自动将None填充为空字符串以入库,tcp/ip模式下则不会,会导致引擎报错,需要手动填充。df_dict = df.to_dict(orient="records")con.execute(orm_table.insert(), df_dict)# df.to_sql(name, con, schema, index=False, if_exists="append")if __name__ == '__main__':# 使用方法cdf = ClickhouseDf()df = pd.DataFrame({'column1': [1, 2, 3],'column2': ['A', 'B', 'C']})db = 'default'password = ''user = 'default'port = 9090host = '192.168.76.136'engine = create_engine('clickhouse+native://{user}:{password}@{host}:{port}/{db}'.format(user=user,host=host,password=urllib.parse.quote_plus(password),db=db,port=port),pool_size=30, max_overflow=0,pool_pre_ping=True, pool_recycle=3600)with engine.connect() as conn:cdf.to_sql(df, "table_name", conn, schema='default', if_exists="replace")list = engine.connect().execute("SELECT * FROM table_name").fetchall()print(list)
1) 运行需要安装包
# pip install sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple
# pip install clickhouse-sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple
2)cdf.to_sql(df, "table_name", conn, schema='default', if_exists="replace")
这里的 schema 一定要写,判断表是否存在 是用
if con.execute('EXISTS default.table_name') == [(0,)]: 来判断表是否存在的
参考链接: SQLAlchemy_clickhouse_sqlalchemy-CSDN博客
https://github.com/xzkostyan/clickhouse-sqlalchemy
相关文章:
python pandas.DataFrame 直接写入Clickhouse
import pandas as pd import sqlalchemy from clickhouse_sqlalchemy import Table, engines from sqlalchemy import create_engine, MetaData, Column import urllib.parsehost 1.1.1.1 user default password default db test port 8123 # http连接端口 engine create…...
德语中第二虚拟式在主动态的形式,柯桥哪里可以学德语
德语中第二虚拟式在主动态的形式 1. 对于大多数的动词,一般使用这样的一般现在时时态: wrde 动词原形 例句:Wenn es nicht so viel kosten wrde, wrde ich mir ein Haus am Meer kaufen. 如果不花这么多钱,我会在海边买一栋房…...
[Python进阶] 消息框、弹窗:tkinter库
6.16 消息框、弹窗:tkinter 6.16.1 前言 应用程序中的提示信息处理程序是非常重要的部分,用户要知道他输入的资料到底正不正确,或者是应用程序有一些提示信息要告诉用户,都必须通过提示信息处理程序来显示适当的信息,…...
(免费领源码)java#Springboot#mysql装修选购网站99192-计算机毕业设计项目选题推荐
摘 要 随着科学技术,计算机迅速的发展。在如今的社会中,市场上涌现出越来越多的新型的产品,人们有了不同种类的选择拥有产品的方式,而电子商务就是随着人们的需求和网络的发展涌动出的产物,电子商务网站是建立在企业与…...
生活废品回收系统 JAVA语言设计和实现
目录 一、系统介绍 二、系统下载 三、系统截图 一、系统介绍 基于VueSpringBootMySQL的生活废品回收系统包含资源类型模块、资源品类模块、回收机构模块、回收机构模块、资源销售单模块、资源交易单模块、资源交易单模块,还包含系统自带的用户管理、部门管理、角…...
redhat/centos 配置本地yum源
- 详细步骤(首先需要将iso文件上传到服务器): 1. mkdir /media/cdrom #新建镜像文件挂载目录2. cd /usr/local/src #进入系统镜像文件存放目录3. ls #列出目录文件,可以看到刚刚上传的系统镜像文件4. mount -t iso9660 -o loop /usr/local/src/rhel-s…...
FLStudio2024汉化破解版在哪可以下载?
水果音乐制作软件FLStudio是一款功能强大的音乐创作软件,全名:Fruity Loops Studio。水果音乐制作软件FLStudio内含教程、软件、素材,是一个完整的软件音乐制作环境或数字音频工作站... FL Studio21简称FL 21,全称 Fruity Loops Studio 21,因此国人习惯叫…...
Java 音频处理,音频流转音频文件,获取音频播放时长
1.背景 最近对接了一款智能手表,手环,可以应用与老人与儿童监控,环卫工人监控,农场畜牧业监控,宠物监控等,其中用到了音频传输,通过平台下发语音包,发送远程命令录制当前设备音频并…...
Spring Boot发送邮件
在现代的互联网应用中,发送电子邮件是一项常见的功能需求。Spring Boot提供了简单且强大的邮件发送功能,使得在应用中集成邮件发送变得非常容易。本文将介绍如何在Spring Boot中发送电子邮件,并提供一个完整的示例。 1. 准备工作 在开始之前…...
智慧矿山:AI算法助力!刮板机监测,生产效率和安全性提升!
工作面刮板机在煤矿等采矿场景中起着重要作用。为了提高其生产效率和安全性,研究人员开发了一种基于 AI 算法的刮板机监测技术。 在传统的刮板机监测中,通常需要人工观察和判断刮板机的状态。这种方法存在许多问题,如主观性、耗时和易出错等。…...
Qt跨平台(统信UOS)各种坑解决办法
记录Qt跨平台的坑,方便日后翻阅。 一、环境安装 本人用的是qt 5.14.2.直接在官网下载即可。地址:Index of /archive/qt/5.14/5.14.2 下载linux版本。 下载之后 添加可执行权限。 chmod 777 qt-opensource-linux-x64-5.14.2.run 然后执行。 出现坑1…...
ORB-SLAM3算法1之Ubuntu18.04+ROS-melodic安装ORB-SLAM3及各种问题解决
文章目录 0 引言1 安装依赖1.1 opencv安装1.2 Eigen3安装1.3 Pangolin安装1.4 其他2 编译安装ORB-SLAM32.1 build.sh2.2 build_ros.sh0 引言 ORB-SLAM3,在之前ORB-SLAM和ORB-SLAM2的基础上,新增了IMU多传感器融合SLAM,这是第一个能够使用针孔和鱼眼镜头模型通过单目、立体和…...
git学习笔记之用命令行解决冲突
背景 一般来说,当使用git检测到源分支和目标分支发生冲突时,我们习惯用IDE在本地进行冲突的解决,再合并、push。 但如果冲突文件不多,我们大可以直接用命令行去解决冲突。 方法 第一种方法: 找到所有的>>>…...
C语言中的内联汇编是什么?如何使用内联汇编进行底层编程?
C语言中的内联汇编是一种高级编程技术,允许开发者在C代码中嵌入汇编代码,以实现对特定处理器指令的直接控制和优化。内联汇编通常用于底层编程,例如操作系统开发、嵌入式系统编程和性能关键的应用程序。本文将详细介绍内联汇编的概念、语法和…...
react笔记基础部分(组件生命周期路由)
注意点: class是一个关键字, 类。 所以react 写class, 用classname ,会自动编译替换class 点击方法: <button onClick {this.sendData}>给父元素传值</button>常用的插件: 需要引入才能使用的…...
Sentinel授权规则和规则持久化
大家好我是苏麟 , 今天说说Sentinel规则持久化. 授权规则 授权规则可以对请求方来源做判断和控制。 授权规则 基本规则 授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。 白名单:来源(origin)在白名单内的调用…...
JVM(三) 垃圾回收
一、自动垃圾回收 1.1 C/C++的内存管理 在C/C++这类没有自动垃圾回收机制的语言中,一个对象如果不再使用,需要手动释放,否则就会出现内存泄漏。我们称这种释放对象的过程为垃圾回收,而需要程序员编写代码进行回收的方式为手动回收。 内存泄漏指的是不再使用的对象在系统中…...
vue3中使用svg并封装成组件
打包svg地图 安装插件 yarn add vite-plugin-svg-icons -D # or npm i vite-plugin-svg-icons -D # or pnpm install vite-plugin-svg-icons -D使用插件 vite.config.ts import { VantResolver } from unplugin-vue-components/resolvers import { createSvgIconsPlugin } from…...
实验六:DHCP、DNS、Apache、FTP服务器的安装和配置
1. (其它) 掌握Linux下DHCP、DNS、Apache、FTP服务器的安装和配置,在Linux服务器上部署JavaWeb应用 完成单元八的实训内容。 1、安装 JDK 2、安装 MySQL 3、部署JavaWeb应用 安装jdk 教程连接:linux安装jdk8详细步骤-CSDN博客 Jdk来源:linu…...
Python实验项目4 :面对对象程序设计
1:运行下面的程序,回答问题。 (1)说明程序的执行过程; (2)程序运行结果是什么? # (1)说明程序的执行过程; # (2)程序运行…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
