当前位置: 首页 > news >正文

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P:

execute row exchanges

becomes PA = LU for any invertible A

Permutations P = identity matrix with reordered rows

m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations

对于nxn矩阵存在着n!个置换矩阵

p^{-1}=p^{T}p^{T}p^{-1}=I

2. Transpose:

(A^{T})_{ij}=A_{ji}

2.1 Symmetric matrices

对称矩阵 A^{T}=A

2.2 矩阵乘积的转置

 (AB)^{T}=B^{T}A^{T}

2.3 R^{T}R is always symmetric

why? take transpose (R^{T}R)^{T}=R^{T}(R^{T})^{T}=R^{T}R

3. 向量空间 Vector spaces

向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

example: R^{2}= all 2-dim real vectors=x-y plane

first component, second component

 R^{3} = all vectors with 3 components

 R^{m} = all column vectors with m real components

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间

反例 not a vector space: 

 R^{2} 中的第一象限则不是一个向量空间, 加法数乘不封闭

4. 子空间 Subspaces

a vector space inside R^{2}, subspace of R^{2}

line in R^{2} through zero vector

反例:

R^{2}中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中

subspaces of R^{2}:

1. all of R^{2}

2. any line through \begin{vmatrix} 0\\ 0 \end{vmatrix}  L(line)

3. zero vector only z(zero)

subspaces of R^{3}:

1. all of R^{3}

2. any plane through \begin{vmatrix} 0\\ 0 \\0 \end{vmatrix} P(plane)

2. any line through \begin{vmatrix} 0\\ 0 \\0 \end{vmatrix}  L(line)

3. zero vector only z(zero) = \left \{\begin{vmatrix} 0\\ 0 \\0 \end{vmatrix} \right \}

5. 列空间 Column spaces

Columns in R^{3}: all their combinations from a subspace called column space C(A)

空间内包含两向量的所有线性组合

相关文章:

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…...

[数据结构】二叉树

1.概念 一棵二叉树是结点的一个有限集合,该集合: 1. 或者为空 2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成 从上图我们可以发现: 1.二叉树不存在大于2 的度 2.二叉树的子树有左右之分,次序不能颠倒。是有…...

idea 中配置 maven

前文叙述: 配置 maven 一共要设置两个地方:1、为当前项目设置2、为新项目设置maven 的下载和安装可参考我之前写过的文章,具体的配置文章中也都有讲解。1、为当前项目进行 maven 配置 配置 VM Options: -DarchetypeCataloginternal2、为新项…...

Python---for循环嵌套

for循环嵌套,就是一个for循环里面嵌套另外一个for循环的写法。 当循环结构相互嵌套时,位于外层的循环结构常简称为外层循环或外循环,位于内层的循环结构常简称为内层循环或内循环。 基本语法: # 外层循环 for i in 序列1:# 内层…...

189. 轮转数组 --力扣 --JAVA

题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 解题思路 通过位移后位置对数组长度的取余来判断元素变换后的位置 代码展示 class Solution {public void rotate(int[] nums, int k) {int size nums.length;int[]…...

C# 使用waveIn实现声音采集

文章目录 前言一、需要的对象及方法二、整体流程三、关键实现1、使用Thread开启线程2、TaskCompletionSource实现异步3、将指针封装为Stream 四、完整代码1.接口2.具体实现 五、使用示例方式一方式二 总结 前言 之前实现了《C 使用waveIn实现声音采集》,后来C#项目…...

长连接的原理

Apollo的长连接实现是 Spring的DeferredResult来实现的,先看怎么用 import ...RestController RequestMapping("deferredResult") public class DeferredResultController {private Map<String, Consumer<DeferredResultResponse>> taskMap new HashMa…...

软考系列(系统架构师)- 2015年系统架构师软考案例分析考点

试题一 软件架构&#xff08;质量属性效用树、架构风险、依够点、权衡点&#xff09; 【问题1】&#xff08;12分&#xff09; 在架构评估过程中&#xff0c;质量属性效用树&#xff08;utility tree&#xff09;是对系统质量属性进行识别和优先级排序的重要工具。请给出合适的…...

小程序开发——小程序的视图与渲染

1.视图与渲染过程 基本概念&#xff1a; 视图层由WXML页面文件和样式文件WXSS共同组成。事件是视图层和逻辑层沟通的纽带&#xff0c;用户操作触发事件后可通过同名的事件处理函数执行相应的逻辑&#xff0c;处理完成后&#xff0c;更新的数据又将再次渲染到页面上。 WXML页面…...

用python实现操作mongodb的插入和查找操作

用python实现操作mongodb的插入和查找操作 import pymongoclient pymongo.MongoClient("mongo://localhost:27017") db client["app"] col db["C1"]# 插入一条数据 #user { # "name": "Sam", # "age":…...

代码审计及示例

简介&#xff1a; 代码安全测试是从安全的角度对代码进行的安全测试评估。 结合丰富的安全知识、编程经验、测试技术&#xff0c;利用静态分析和人工审核的方法寻找代码在架构和编码上的安全缺陷&#xff0c;在代码形成软件产品前将业务软件的安全风险降到最低。 方法&#x…...

【Kotlin精简】第6章 反射

1 反射简介 反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff0c;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性。 1.1 Kotlin反射 我们对比Kotlin和Java的反射类图。 1.1.1 Kotlin反射常用的数据结…...

基于FPGA的电风扇控制器verilog,视频/代码

名称&#xff1a;基于FPGA的电风扇控制器verilog 软件&#xff1a;QuartusII 语言&#xff1a;Verilog 代码功能&#xff1a; 基于FPGA的电风扇控制器 运用 EDA SOPO实验开发系统设计一个基于FPGA的电风扇定时开关控制器,能实现手动和自动模式之间的切换。要求: (1)KI为电…...

【MySQL】区分:等值连接/自连接/自然连接/外连接 以及ON和Where使用

区分&#xff1a;等值连接/自连接/自然连接/外连接 以及ON和Where使用 一、等值连接二、自连接三、自然连接四、外连接1.左外连接2.右外连接3.全外连接 五、using 和 on六、JOIN 关联表中 ON、WHERE 后面跟条件的区别 一、等值连接 等值连接&#xff1a;它是基于两个表之间的相…...

Windows环境下Apache安装部署说明及常见问题解决

一、软件准备 1.1 Python的下载与安装 见博客 链接: Python下载安装 1.2 Pycharm的下载与安装 见博客 链接: pycharm安装 1.3 Mysql的下载与安装 见博客 链接: MySQL安装 1.4 Navicat的下载与安装 可参考软件安装管家。 解释说明:Pycharm是Python的集成编译环境&#xff0c;Nav…...

Linux-安装docker-compose

前言&#xff1a;本文建立在服务器中已经存在docker环境的基础上&#xff0c;总结了安装docker-compose过程&#xff0c;以及安装过程中遇到的问题和解决方案。 一、下载docker-compose 在网上找了两种&#xff0c;一种是github官方的&#xff0c;一种是国内的镜像 gitbub官…...

机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)

KNN-手写数字数据集: 使用sklearn中的KNN算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离; 分段解释代码: import os import pandas as pd from Levenshtein import hamming导入所需的库,包括os用于文件操作,pandas用于数据处理,以及hamm…...

Java零基础入门-赋值运算符

前言 Java是一门广泛被应用的编程语言&#xff0c;它被用于开发各种类型的应用程序&#xff0c;从桌面应用程序到企业级后端系统。对于零基础的人来说&#xff0c;学习Java可能会感到有些困难。本文将帮助那些没有编程经验的人了解Java的赋值运算符。 摘要 本文将介绍Java中…...

xshell+xming显示jmeter的gui页面

1.下载和安装xming&#xff0c;下载地址&#xff1a;https://sourceforge.net/projects/xming/ 2.配置xming 记住这个端口&#xff0c;一会要用到 修改进入xming安装目录修改host文件 此处是远程服务器的ip 3.服务器执行vi /etc/ssh/sshd_config&#xff0c;修改成如图所示…...

el-tree业务

<el-form-item label"选择节点" prop"node_ids"><el-checkboxv-if"regionList.length"v-model"selectAll":disabled"selectDisabled":indeterminate"isIndeterminate":show-checkbox"!selectDisabl…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...