当前位置: 首页 > news >正文

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P:

execute row exchanges

becomes PA = LU for any invertible A

Permutations P = identity matrix with reordered rows

m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations

对于nxn矩阵存在着n!个置换矩阵

p^{-1}=p^{T}p^{T}p^{-1}=I

2. Transpose:

(A^{T})_{ij}=A_{ji}

2.1 Symmetric matrices

对称矩阵 A^{T}=A

2.2 矩阵乘积的转置

 (AB)^{T}=B^{T}A^{T}

2.3 R^{T}R is always symmetric

why? take transpose (R^{T}R)^{T}=R^{T}(R^{T})^{T}=R^{T}R

3. 向量空间 Vector spaces

向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

example: R^{2}= all 2-dim real vectors=x-y plane

first component, second component

 R^{3} = all vectors with 3 components

 R^{m} = all column vectors with m real components

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间

反例 not a vector space: 

 R^{2} 中的第一象限则不是一个向量空间, 加法数乘不封闭

4. 子空间 Subspaces

a vector space inside R^{2}, subspace of R^{2}

line in R^{2} through zero vector

反例:

R^{2}中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中

subspaces of R^{2}:

1. all of R^{2}

2. any line through \begin{vmatrix} 0\\ 0 \end{vmatrix}  L(line)

3. zero vector only z(zero)

subspaces of R^{3}:

1. all of R^{3}

2. any plane through \begin{vmatrix} 0\\ 0 \\0 \end{vmatrix} P(plane)

2. any line through \begin{vmatrix} 0\\ 0 \\0 \end{vmatrix}  L(line)

3. zero vector only z(zero) = \left \{\begin{vmatrix} 0\\ 0 \\0 \end{vmatrix} \right \}

5. 列空间 Column spaces

Columns in R^{3}: all their combinations from a subspace called column space C(A)

空间内包含两向量的所有线性组合

相关文章:

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…...

[数据结构】二叉树

1.概念 一棵二叉树是结点的一个有限集合,该集合: 1. 或者为空 2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成 从上图我们可以发现: 1.二叉树不存在大于2 的度 2.二叉树的子树有左右之分,次序不能颠倒。是有…...

idea 中配置 maven

前文叙述: 配置 maven 一共要设置两个地方:1、为当前项目设置2、为新项目设置maven 的下载和安装可参考我之前写过的文章,具体的配置文章中也都有讲解。1、为当前项目进行 maven 配置 配置 VM Options: -DarchetypeCataloginternal2、为新项…...

Python---for循环嵌套

for循环嵌套,就是一个for循环里面嵌套另外一个for循环的写法。 当循环结构相互嵌套时,位于外层的循环结构常简称为外层循环或外循环,位于内层的循环结构常简称为内层循环或内循环。 基本语法: # 外层循环 for i in 序列1:# 内层…...

189. 轮转数组 --力扣 --JAVA

题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 解题思路 通过位移后位置对数组长度的取余来判断元素变换后的位置 代码展示 class Solution {public void rotate(int[] nums, int k) {int size nums.length;int[]…...

C# 使用waveIn实现声音采集

文章目录 前言一、需要的对象及方法二、整体流程三、关键实现1、使用Thread开启线程2、TaskCompletionSource实现异步3、将指针封装为Stream 四、完整代码1.接口2.具体实现 五、使用示例方式一方式二 总结 前言 之前实现了《C 使用waveIn实现声音采集》,后来C#项目…...

长连接的原理

Apollo的长连接实现是 Spring的DeferredResult来实现的,先看怎么用 import ...RestController RequestMapping("deferredResult") public class DeferredResultController {private Map<String, Consumer<DeferredResultResponse>> taskMap new HashMa…...

软考系列(系统架构师)- 2015年系统架构师软考案例分析考点

试题一 软件架构&#xff08;质量属性效用树、架构风险、依够点、权衡点&#xff09; 【问题1】&#xff08;12分&#xff09; 在架构评估过程中&#xff0c;质量属性效用树&#xff08;utility tree&#xff09;是对系统质量属性进行识别和优先级排序的重要工具。请给出合适的…...

小程序开发——小程序的视图与渲染

1.视图与渲染过程 基本概念&#xff1a; 视图层由WXML页面文件和样式文件WXSS共同组成。事件是视图层和逻辑层沟通的纽带&#xff0c;用户操作触发事件后可通过同名的事件处理函数执行相应的逻辑&#xff0c;处理完成后&#xff0c;更新的数据又将再次渲染到页面上。 WXML页面…...

用python实现操作mongodb的插入和查找操作

用python实现操作mongodb的插入和查找操作 import pymongoclient pymongo.MongoClient("mongo://localhost:27017") db client["app"] col db["C1"]# 插入一条数据 #user { # "name": "Sam", # "age":…...

代码审计及示例

简介&#xff1a; 代码安全测试是从安全的角度对代码进行的安全测试评估。 结合丰富的安全知识、编程经验、测试技术&#xff0c;利用静态分析和人工审核的方法寻找代码在架构和编码上的安全缺陷&#xff0c;在代码形成软件产品前将业务软件的安全风险降到最低。 方法&#x…...

【Kotlin精简】第6章 反射

1 反射简介 反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff0c;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性。 1.1 Kotlin反射 我们对比Kotlin和Java的反射类图。 1.1.1 Kotlin反射常用的数据结…...

基于FPGA的电风扇控制器verilog,视频/代码

名称&#xff1a;基于FPGA的电风扇控制器verilog 软件&#xff1a;QuartusII 语言&#xff1a;Verilog 代码功能&#xff1a; 基于FPGA的电风扇控制器 运用 EDA SOPO实验开发系统设计一个基于FPGA的电风扇定时开关控制器,能实现手动和自动模式之间的切换。要求: (1)KI为电…...

【MySQL】区分:等值连接/自连接/自然连接/外连接 以及ON和Where使用

区分&#xff1a;等值连接/自连接/自然连接/外连接 以及ON和Where使用 一、等值连接二、自连接三、自然连接四、外连接1.左外连接2.右外连接3.全外连接 五、using 和 on六、JOIN 关联表中 ON、WHERE 后面跟条件的区别 一、等值连接 等值连接&#xff1a;它是基于两个表之间的相…...

Windows环境下Apache安装部署说明及常见问题解决

一、软件准备 1.1 Python的下载与安装 见博客 链接: Python下载安装 1.2 Pycharm的下载与安装 见博客 链接: pycharm安装 1.3 Mysql的下载与安装 见博客 链接: MySQL安装 1.4 Navicat的下载与安装 可参考软件安装管家。 解释说明:Pycharm是Python的集成编译环境&#xff0c;Nav…...

Linux-安装docker-compose

前言&#xff1a;本文建立在服务器中已经存在docker环境的基础上&#xff0c;总结了安装docker-compose过程&#xff0c;以及安装过程中遇到的问题和解决方案。 一、下载docker-compose 在网上找了两种&#xff0c;一种是github官方的&#xff0c;一种是国内的镜像 gitbub官…...

机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)

KNN-手写数字数据集: 使用sklearn中的KNN算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离; 分段解释代码: import os import pandas as pd from Levenshtein import hamming导入所需的库,包括os用于文件操作,pandas用于数据处理,以及hamm…...

Java零基础入门-赋值运算符

前言 Java是一门广泛被应用的编程语言&#xff0c;它被用于开发各种类型的应用程序&#xff0c;从桌面应用程序到企业级后端系统。对于零基础的人来说&#xff0c;学习Java可能会感到有些困难。本文将帮助那些没有编程经验的人了解Java的赋值运算符。 摘要 本文将介绍Java中…...

xshell+xming显示jmeter的gui页面

1.下载和安装xming&#xff0c;下载地址&#xff1a;https://sourceforge.net/projects/xming/ 2.配置xming 记住这个端口&#xff0c;一会要用到 修改进入xming安装目录修改host文件 此处是远程服务器的ip 3.服务器执行vi /etc/ssh/sshd_config&#xff0c;修改成如图所示…...

el-tree业务

<el-form-item label"选择节点" prop"node_ids"><el-checkboxv-if"regionList.length"v-model"selectAll":disabled"selectDisabled":indeterminate"isIndeterminate":show-checkbox"!selectDisabl…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...