05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces
1. Permutations P:
execute row exchanges
becomes PA = LU for any invertible A
Permutations P = identity matrix with reordered rows
m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations
对于nxn矩阵存在着n!个置换矩阵
,
2. Transpose:
2.1 Symmetric matrices
对称矩阵
2.2 矩阵乘积的转置
2.3
is always symmetric
why? take transpose
3. 向量空间 Vector spaces
向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内
example: = all 2-dim real vectors=x-y plane
first component, second component
= all vectors with 3 components
= all column vectors with m real components
所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间
反例 not a vector space:
中的第一象限则不是一个向量空间, 加法数乘不封闭
4. 子空间 Subspaces
a vector space inside , subspace of
line in through zero vector
反例:
中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中
subspaces of
:
1. all of
2. any line through L(line)
3. zero vector only z(zero)
subspaces of
:
1. all of
2. any plane through P(plane)
2. any line through L(line)
3. zero vector only z(zero) =
5. 列空间 Column spaces
Columns in : all their combinations from a subspace called column space C(A)
空间内包含两向量的所有线性组合
相关文章:

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces
1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…...

[数据结构】二叉树
1.概念 一棵二叉树是结点的一个有限集合,该集合: 1. 或者为空 2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成 从上图我们可以发现: 1.二叉树不存在大于2 的度 2.二叉树的子树有左右之分,次序不能颠倒。是有…...

idea 中配置 maven
前文叙述: 配置 maven 一共要设置两个地方:1、为当前项目设置2、为新项目设置maven 的下载和安装可参考我之前写过的文章,具体的配置文章中也都有讲解。1、为当前项目进行 maven 配置 配置 VM Options: -DarchetypeCataloginternal2、为新项…...

Python---for循环嵌套
for循环嵌套,就是一个for循环里面嵌套另外一个for循环的写法。 当循环结构相互嵌套时,位于外层的循环结构常简称为外层循环或外循环,位于内层的循环结构常简称为内层循环或内循环。 基本语法: # 外层循环 for i in 序列1:# 内层…...
189. 轮转数组 --力扣 --JAVA
题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 解题思路 通过位移后位置对数组长度的取余来判断元素变换后的位置 代码展示 class Solution {public void rotate(int[] nums, int k) {int size nums.length;int[]…...

C# 使用waveIn实现声音采集
文章目录 前言一、需要的对象及方法二、整体流程三、关键实现1、使用Thread开启线程2、TaskCompletionSource实现异步3、将指针封装为Stream 四、完整代码1.接口2.具体实现 五、使用示例方式一方式二 总结 前言 之前实现了《C 使用waveIn实现声音采集》,后来C#项目…...

长连接的原理
Apollo的长连接实现是 Spring的DeferredResult来实现的,先看怎么用 import ...RestController RequestMapping("deferredResult") public class DeferredResultController {private Map<String, Consumer<DeferredResultResponse>> taskMap new HashMa…...

软考系列(系统架构师)- 2015年系统架构师软考案例分析考点
试题一 软件架构(质量属性效用树、架构风险、依够点、权衡点) 【问题1】(12分) 在架构评估过程中,质量属性效用树(utility tree)是对系统质量属性进行识别和优先级排序的重要工具。请给出合适的…...

小程序开发——小程序的视图与渲染
1.视图与渲染过程 基本概念: 视图层由WXML页面文件和样式文件WXSS共同组成。事件是视图层和逻辑层沟通的纽带,用户操作触发事件后可通过同名的事件处理函数执行相应的逻辑,处理完成后,更新的数据又将再次渲染到页面上。 WXML页面…...
用python实现操作mongodb的插入和查找操作
用python实现操作mongodb的插入和查找操作 import pymongoclient pymongo.MongoClient("mongo://localhost:27017") db client["app"] col db["C1"]# 插入一条数据 #user { # "name": "Sam", # "age":…...

代码审计及示例
简介: 代码安全测试是从安全的角度对代码进行的安全测试评估。 结合丰富的安全知识、编程经验、测试技术,利用静态分析和人工审核的方法寻找代码在架构和编码上的安全缺陷,在代码形成软件产品前将业务软件的安全风险降到最低。 方法&#x…...

【Kotlin精简】第6章 反射
1 反射简介 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法,对于任意一个对象,都能够调用它的任意一个方法和属性。 1.1 Kotlin反射 我们对比Kotlin和Java的反射类图。 1.1.1 Kotlin反射常用的数据结…...

基于FPGA的电风扇控制器verilog,视频/代码
名称:基于FPGA的电风扇控制器verilog 软件:QuartusII 语言:Verilog 代码功能: 基于FPGA的电风扇控制器 运用 EDA SOPO实验开发系统设计一个基于FPGA的电风扇定时开关控制器,能实现手动和自动模式之间的切换。要求: (1)KI为电…...
【MySQL】区分:等值连接/自连接/自然连接/外连接 以及ON和Where使用
区分:等值连接/自连接/自然连接/外连接 以及ON和Where使用 一、等值连接二、自连接三、自然连接四、外连接1.左外连接2.右外连接3.全外连接 五、using 和 on六、JOIN 关联表中 ON、WHERE 后面跟条件的区别 一、等值连接 等值连接:它是基于两个表之间的相…...

Windows环境下Apache安装部署说明及常见问题解决
一、软件准备 1.1 Python的下载与安装 见博客 链接: Python下载安装 1.2 Pycharm的下载与安装 见博客 链接: pycharm安装 1.3 Mysql的下载与安装 见博客 链接: MySQL安装 1.4 Navicat的下载与安装 可参考软件安装管家。 解释说明:Pycharm是Python的集成编译环境,Nav…...

Linux-安装docker-compose
前言:本文建立在服务器中已经存在docker环境的基础上,总结了安装docker-compose过程,以及安装过程中遇到的问题和解决方案。 一、下载docker-compose 在网上找了两种,一种是github官方的,一种是国内的镜像 gitbub官…...

机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)
KNN-手写数字数据集: 使用sklearn中的KNN算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离; 分段解释代码: import os import pandas as pd from Levenshtein import hamming导入所需的库,包括os用于文件操作,pandas用于数据处理,以及hamm…...
Java零基础入门-赋值运算符
前言 Java是一门广泛被应用的编程语言,它被用于开发各种类型的应用程序,从桌面应用程序到企业级后端系统。对于零基础的人来说,学习Java可能会感到有些困难。本文将帮助那些没有编程经验的人了解Java的赋值运算符。 摘要 本文将介绍Java中…...

xshell+xming显示jmeter的gui页面
1.下载和安装xming,下载地址:https://sourceforge.net/projects/xming/ 2.配置xming 记住这个端口,一会要用到 修改进入xming安装目录修改host文件 此处是远程服务器的ip 3.服务器执行vi /etc/ssh/sshd_config,修改成如图所示…...
el-tree业务
<el-form-item label"选择节点" prop"node_ids"><el-checkboxv-if"regionList.length"v-model"selectAll":disabled"selectDisabled":indeterminate"isIndeterminate":show-checkbox"!selectDisabl…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...