当前位置: 首页 > news >正文

【阅读笔记】SecureML: A System for ScalablePrivacy-Preserving Machine Learning

1. Motivation 

针对机器学习中的出现的数据隐私泄露的风险,提出了线性回归、逻辑回归以及简单神经网络的隐私保护模型。

2. Contributions

2.1 为线性回归、逻辑回归以及神经网络设计安全计算协议

2.1.1.1 线性回归

线性回归损失函数为:

  \small C(w)=\frac{1}{n}\sum C_i(w),\small C_i(\mathbf{w})=\frac{1}{2}(\mathbf{x_i}\cdot \mathbf{w}-y_i)^2

采用SGD算法处理损失函数,权重w的更新公式为:

\small w_{j}:=w_{j}-\alpha \frac{\partial C_{i}(\mathbf{w})}{\partial w_{j}}

式子只有加法、乘法运算,秘密分享的形式为:

\small \langle w_j\rangle:=\left\langle w_{j}\right\rangle-\alpha \operatorname{Mul}^{A}\left(\sum_{k=1}^{d} \operatorname{Mul}^{A}\left(\left\langle x_{i k}\right\rangle,\left\langle w_{k}\right\rangle\right)-\left\langle y_{i}\right\rangle,\left\langle x_{i j}\right\rangle\right)

写成向量的形式为:

\small \langle \mathbf{w}\rangle:=\langle \mathbf{w}\rangle-\frac{1}{|B|} \alpha \operatorname{Mul}^{A}\left(\left\langle\mathbf{X}_{B}^{T}\right\rangle, \operatorname{Mul}^{A}\left(\left\langle\mathbf{X}_{B}\right\rangle,\langle\mathbf{w}\rangle\right)-\left\langle\mathbf{Y}_{B}\right\rangle\right)

根据Beaver's triple 计算矩阵乘法:

这里需要注意的是文章中说明的是两个服务器\small S_0,S_1,都以获得数据的一个份额,并不是各方持有一份完整的数据。

可得:\small \langle\mathbf{C}\rangle_{i}=-i \cdot \mathbf{E} \times \mathbf{F}+\langle\mathbf{A}\rangle_{i} \times \mathbf{F}+\mathbf{E} \times\langle\mathbf{B}\rangle_{i}+\langle\mathbf{Z}\rangle_{i},之后的乘法运算都依据这个式子。

完整过程如下:

2.2 运算中小数的处理

计算小数乘法,x*y,假设x和y都最多有D为小数。

(1)将x和y进行扩大

x^{'}=2^{l_D}x,y^{'}=2^{l_D}y

(2)截断小数

        扩大后结果为z=x^{'}y^{'},小数位数最多D为,所以将最后D位截取,截断后的结果可写为z=z_1\cdot2^{l_D}+z_2,用[z]表示截断操作则最的相乘结果为z_1

2.3 优化激活函数

        在逻辑回归算法中,有函数f()=\frac{1}{1+e^{-x}},其中在实数域中,该函数包含的除法和求幂运算很难支持2PC和布尔运算,比之前工作用多项式去逼近函数不同的是,作者提出一个Friendly activation function,函数为f(u),f(u)图像如下图所示。

f(u)=\left\{\begin{array}{ll} 0, & \text { if } u<-\frac{1}{2} \\ u+\frac{1}{2}, & \text { if }-\frac{1}{2} \leq u \leq \frac{1}{2} \\ 1, & \text { if } u>\frac{1}{2} \end{array}\right.\textup{}              

 构造的灵感来源于:

(1)函数值应该收敛在0和1之间;(2)RELU函数

2.4 引入了面向秘密共享的向量化计算

线性回归下模型权重更新公式为\small w_{j}:=w_{j}-\alpha \frac{\partial C_{i}(\mathbf{w})}{\partial w_{j}},仅涉及加法和乘法。秘密分享形式下的加法在本地即可计算,而乘法需要借助Beavers Triple。但是元素级别的运算效率太低,这里优化为矩阵乘法C=A\cdot B,由2.1节可知C的Share为:\small \langle\mathbf{C}\rangle_{i}=-i \cdot \mathbf{E} \times \mathbf{F}+\langle\mathbf{A}\rangle_{i} \times \mathbf{F}+\mathbf{E} \times\langle\mathbf{B}\rangle_{i}+\langle\mathbf{Z}\rangle_{i},这样可以大大加快计算效率。

3. Q&R

3.1 为什么加法秘密共享是环上,shamir是在域上?

答:加法秘密分享只需要加减法就可以定义分享和恢复算法;shamir的恢复算法需要计算离散空间的除法,环中因为有些元素没有逆元,所以没法保证恢复算法能成功。域中元素都有逆元,可以计算除法。

3.2 隐私计算往往要求在有限域上运算,实际问题怎么去应用?

答:需要转化为将实际的运算转化到有限域的代数系统中。

4. Summary

        优化一个问题,可以从各个方面入手,有的对结果有直接影响,有的是间接影响;有的直接影响大,有的直接影响小。

Reference

1.论文阅读笔记:SecureML: A System for Scalable Privacy-Preserving Machine Learning - 知乎

2.为什么不可以直接在实数上进行秘密分享? - 知乎 (zhihu.com)

相关文章:

【阅读笔记】SecureML: A System for ScalablePrivacy-Preserving Machine Learning

1. Motivation 针对机器学习中的出现的数据隐私泄露的风险&#xff0c;提出了线性回归、逻辑回归以及简单神经网络的隐私保护模型。 2. Contributions 2.1 为线性回归、逻辑回归以及神经网络设计安全计算协议 2.1.1.1 线性回归 线性回归损失函数为&#xff1a; , 采用SG…...

【2023美赛】C题Wordle预测27页中文论文及Python代码详解

【2023美赛】C题Wordle预测27页中文论文及Python详解 相关链接 &#xff08;1&#xff09;2023年美赛C题Wordle预测问题一建模及Python代码详细讲解 &#xff08;2&#xff09;2023年美赛C题Wordle预测问题二建模及Python代码详细讲解 &#xff08;3&#xff09;2023年美赛C题…...

【C++修行之路】STL——模拟实现string类

文章目录前言类框架构造与析构c_str迭代器操作符重载[]&#xff1a;&#xff1a;> > < < !:reverse与resizereverseresizepush_back与append复用实现insert和erasec_str与流插入、流提取eraseswap(s1,s2)与s1.swap(s2)结语前言 这次我们分几个部分来实现string类…...

CorelDRAW2023最新版序列号使用教程

CorelDRAW2023用起来非常顺手&#xff0c;旨在为用户解决因在工作上带来的问题&#xff0c;在业内可谓享有极高的声誉&#xff0c;是业内人士常用的一款工具&#xff0c;有了它&#xff0c;可以更好的帮助用户把握好各个方面的细节&#xff0c;减少其他方面的失误&#xff0c;让…...

【一天一门编程语言】Python 语言程序设计极简教程

文章目录 Python 语言程序设计极简教程一、Python语言简介1.1 Python的优势1.2 Python的应用二、Python基础语法2.1 Python基础2.1.1 注释2.1.2 变量2.1.3 运算符2.1.4 控制流2.1.5 函数2.2 Python数据类型2.2.1 数字2.2.2 字符串2.2.3 列表2.2.4 元组2.2.4.1 元组的基本操作创…...

14、KL散度

KL 散度&#xff0c;是一个用来衡量两个概率分布的相似性的一个度量指标。 现实世界里的任何观察都可以看成表示成信息和数据&#xff0c;一般来说&#xff0c;我们无法获取数据的总体&#xff0c;我们只能拿到数据的部分样本&#xff0c;根据数据的部分样本&#xff0c;我们会…...

TypeError: load() missing 1 required positional argument: ‘Loader‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理…...

【设计模式】 观察者模式介绍及C代码实现

【设计模式】 观察者模式介绍及C代码实现 背景 在软件构建过程中&#xff0c;我们需要为某些对象建立一种“通知依赖关系”&#xff0c;即一个对象&#xff08;目标对象&#xff09;的状态发生改变&#xff0c;所有的依赖对象&#xff08;观察者对象&#xff09;都将得到通知。…...

01-Maven基础-简介安装、基本使用(命令)、IDEA配置、(写jar,刷新自动下载)、依赖管理

文章目录0、Maven1、Maven 简介2、Maven 安装配置安装配置步骤3、Maven 基本使用Maven 常用命令Maven 生命周期IDEA 配置 MavenMaven 坐标详解IDEA 创建 Maven 项目IDEA 导入 Maven 项目配置 Maven-Helper 插件 (非常实用的小插件)依赖管理使用坐标导入 jar 包依赖范围0、Maven…...

一、前端稳定性规约该如何制定

前言 稳定性是数学或工程上的用语&#xff0c;判别一系统在有界的输入是否也产生有界的输出。若是&#xff0c;称系统为稳定&#xff1b;若否&#xff0c;则称系统为不稳定。 前端稳定性的体系建设大约可以分为了发布前&#xff0c;发布后&#xff0c;以及事故解决后三个阶段…...

Docker(三)Docker网络

目录1 结论知识2 link3 自定义网络1 结论知识 每一个容器启动时都会被分配一个ip地址&#xff1b;宿主机可以ping通任何一个docker容器&#xff1b;启动docker之后&#xff0c;宿主机默认网卡docker0&#xff0c;启动容器在宿主机注册网卡&#xff0c;使用的evth-pair技术&…...

Js高级API

Decorator装饰器 针对属性 / 方法的装饰器 // decorator 外部可以包装一个函数&#xff0c;函数可以带参数function Decorator (type) {/*** 这里是真正的decorator* description: 装饰的对象的描述对象* target:装饰的属性所述类的原型&#xff0c;不是实例后的类。如果装饰…...

团队:在人身上,你到底愿意花多大精力?

你好&#xff0c;我是叶芊。 今天我们讨论怎么带团队这个话题&#xff0c;哎先别急着走&#xff0c;你可能跟很多人一样&#xff0c;觉得带团队离我还太远&#xff0c;或者觉得我才不要做管理&#xff0c;我要一路技术走到底&#xff0c;但是你知道吗&#xff1f;带团队做事&am…...

Linux-Poolkit提权

Linux-Poolkit提权 漏洞复现- Linux Polkit 权限提升漏洞&#xff08;CVE-2021-4034&#xff09; 0x00 前言 polkit是一个授权管理器&#xff0c;其系统架构由授权和身份验证代理组成&#xff0c;pkexec是其中polkit的其中一个工具&#xff0c;他的作用有点类似于sudo&#x…...

【React全家桶】React Hooks

React Hookshooks介绍useState(保存组件状态)useEffect()useCallback(记忆函数)useMemo() 记忆组件useRef(保存引用值)useReducer()useContext(减少组件层级)自定义hookshooks介绍 在react类组件&#xff08;class&#xff09;写法中&#xff0c;有setState和生命周期对状态进…...

CLIP论文阅读

Learning Transferable Visual Models From Natural Language Supervision 利用自然语言的监督信号学习可迁移的视觉模型 概述 迁移学习方式就是先在一个较大规模的数据集如ImageNet上预训练&#xff0c;然后在具体的下游任务上再进行微调。这里的预训练是基于有监督训练的&am…...

华为OD机试真题Python实现【身高排序】真题+解题思路+代码(20222023)

身高排序 题目 小明今年升学到了小学一年级, 来到新班级后,发现其他小朋友身高参差不齐, 然后就想基于各小朋友和自己的身高差,对他们进行排序, 请帮他实现排序 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 输入 第一行为正整数H…...

Spring Cache的使用--快速上手篇

系列文章目录 分页查询–Java项目实战篇 全局异常处理–Java实战项目篇 完善登录功能–过滤器的使用 更多该系列文章请查看我的主页哦 文章目录系列文章目录前言一、Spring Cache介绍二、Spring Cache的使用1. 导入依赖2. 配置信息3. 在启动类上添加注解4. 添加注解4.1 CacheP…...

(三十八)MySQL是如何支持4种事务隔离级别的?Spring事务注解是如何设置的?

上次我们讲完了SQL标准下的4种事务隔离级别&#xff0c;平时比较多用的就是RC和RR两种级别&#xff0c;那么在MySQL中也是支持那4种隔离级别的&#xff0c;基本的语义都是差不多的 但是要注意的一点是&#xff0c;MySQL默认设置的事务隔离级别&#xff0c;都是RR级别的&#x…...

【博学谷学习记录】大数据课程-学习第八周总结

Hadoop初体验 使用HDFS 1.从Linux本地上传一个文本文件到hdfs的/目录下 #在/export/data/目录中创建a.txt文件&#xff0c;并写入数据 cd /export/data/ touch a.txt echo "hello" > a.txt #将a.txt上传到HDFS的根目录 hadoop fs -put a.txt /2.通过页面查看…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...