知识图谱相关的操作
微软生成自己的图谱:GitHub - microsoft/SmartKG: This project accepts excel files as input which contains the description of a Knowledge Graph (Vertexes and Edges) and convert it into an in-memory Graph Store. This project implements APIs to search/filter/get nodes and relations from the in-memory Knowledge Graph. This project also provides a dialog management framework and enable a chatbot based on its knowledge graph.
推荐算法的数据集有:(10条消息) 16个推荐系统开放公共数据集整理分享_hellozhxy的博客-CSDN博客_数据集推荐
关于推荐算法知识图谱的数据集:
一 Neo4j图数据库介绍
用的人最多,与python好交互。
Neo4j-CQL教程 https://www.w3cschool.cn/neo4j/neo4j_cql_introduction.html
下载安装SDK,neo4j
启动:
1.在cmd窗口启动
启动命令为
neo4j.bat console
2.启动信息为如下
3. 复制上图的 启动地址到浏览器
http://localhost:7474/
出现如下画面,说明启动成功
二.可视化例子演示
三 知识图谱构成的流程
知识图谱生成流程
(1)数据获取:利用网络爬虫技术从天猫网、淘宝网等电商类网站获取商品详情数据、用户评论数据。
(2)信息转化:信息转化的对象主要是半结构化的商品详情数据,包括商品、店铺、品牌等实体、关系和属性。电商类网站的商品详情数据按照信息组织的规范进行编辑与展示,本文首先根据网页结构设计商品知识图谱的模式层,并通过制定规则模板完成数据层的信息转化与导入。
(3)数据预处理:数据预处理的对象主要是非结构化的用户评论数据,首先对所有数据进行数据去重、数据筛选、数据清洗等基础工作。然后基于用户观点挖掘,采用文本标注的方式将不同数据类型进行区分,为后续工作提供支持。
(4)实体识别:旨在识别非结构化文本中的实体单元,包括穿搭、颜色、价格、质量、情感正负等。本文通过BERT-BiLSTM-CRF的深度学习模型完成实体识别,并经过实验对比验证了方法的可靠性。
BERT-BiLSTM-CRF的深度学习模型
【精选】Bert-Bilstm-CRF基线模型详解&代码实现_suibianshen2012的博客-CSDN博客
命名实体识别模型BERT-Bi-LSTM-CRF - 知乎 (zhihu.com)
(5)关系抽取:旨在抽取非结构化文本中实体单元之间的关系,主要是建立评价对象单元与情感倾向单元之间的联系。本文通过实体类别特征、依存句法特征结合的方式完成关系抽取。
(6)实体融合:利用评价单元的上下文语义关系完成实体对齐,主要是消除用户评论的歧义性,规范语义表达。本文通过Word2Vec词向量获得实体单元的语义特征,采用余弦相似度的计算方式比较实体间相似度,设定阈值完成实体融合。
(7)知识图谱存储:旨在将上述步骤中得到的<实体,关系,实体>的三元组结构存储到基于Neo4j的知识图谱中,完成知识图谱构建。
相关文章:

知识图谱相关的操作
微软生成自己的图谱:GitHub - microsoft/SmartKG: This project accepts excel files as input which contains the description of a Knowledge Graph (Vertexes and Edges) and convert it into an in-memory Graph Store. This project implements APIs to searc…...

【Javascript】json
目录 什么是json? 书写格式 json 序列化和反序列化 序列化 反序列化 什么是json? JSON(JavaScript Object Notation)是⼀种轻量级的数据交换格式,它基于JavaScript的⼀个⼦集,易于⼈的编写和阅读,也易于机器解析…...

零资源的大语言模型幻觉预防
零资源的大语言模型幻觉预防 摘要1 引言2 相关工作2.1 幻觉检测和纠正方法2.2 幻觉检测数据集 3 方法论3.1 概念提取3.2 概念猜测3.2.1 概念解释3.2.2 概念推理 3.3 聚合3.3.1 概念频率分数3.3.2 加权聚合 4 实验5 总结 摘要 大语言模型(LLMs)在各个领域…...
智能终端界面自动化测试操作工具 - Appium常见用法
1. Appium 是什么可以做什么? Appium 是一款开源的移动应用自动化测试框架,用于测试移动应用程序的功能和用户界面。它支持多种移动平台,包括 Android 和 iOS,可以使用多种编程语言进行脚本编写,如 Python、Java、Jav…...

结构体数组经典运用---选票系统
结构体的引入 1、概念:结构体和其他类型基础数据类型一样,例如int类型,char类型,float类型等。整型数,浮点型数,字符串是分散的数据表示,有时候我们需要用很多类型的数据来表示一个整体&#x…...

code too large
描述:比较尴尬,一个方法的代码接近10000行了,部署服务器的时候提示(java :code[255,21] too large),提示代码过长,无法运行。 查看了一下百度:解决的思路 JVM规范:「类或接口可以声明的字段数量限制在 655…...
vue中把弹出层.vue文件注册成组件供其他.vue文件调用的写法
背景:因弹出层多个页面的详情都是一样的,因此把弹出层定义成组件,多次调用 定义组件的过程中出现很多问题,因此再次记录最终成功的写法 一、 简单实现页面调用弹出层组件的打开弹出层方法: 1. 弹出层组件 (in…...

mac 查看GPU使用
首先搜索活动监视器 然后 点击窗口->gpu历史记录 记住不是立马出结果,而是 需要等半分钟左右的...

工业4.0的安全挑战与解决方案
在当今数字化时代,工业4.0已经成为制造业的核心趋势。工业4.0的兴起为生产企业带来了前所未有的效率和灵活性,但与之伴随而来的是一系列的安全挑战。本文将深入探讨工业4.0的安全挑战,并提供一些解决方案,以确保制造业的数字化转型…...

如何查找特定基因集合免疫基因集 炎症基因集
温故而知新,再次看下Msigdb数据库。它更新了很多内容。给我们提供了一个查询基因集的地方。 关注微信:生信小博士 比如纤维化基因集: 打开网址:https://www.gsea-msigdb.org/gsea/msigdb/index.jsp 2.点击search 3.比如我对纤维…...

轮转数组(Java)
大家好我是苏麟 , 这篇文章是凑数的 ... 轮转数组 描述 : 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 题目 : 牛客 NC110 旋转数组: 这里牛客给出了数组长度我们直接用就可以了 . LeetCode 189.轮转数组 : 189. 轮…...

Spring体系结构
Spring体系结构 核心容器 核心容器由 spring-core,spring-beans,spring-context,spring-context-support和spring-expression(SpEL,Spring 表达式语言,Spring Expression Language)等模块组成&…...
PostgreSQL basebackup备份和恢复
一、概述 备份和恢复分为逻辑和物理,这里指物理备份和恢复。 PG的物理备份依赖basebackup,这差不多就是数据目录的拷贝,还依赖归档日志。 恢复分为完全恢复和PITR恢复,它们都需要归档日志,它们关键的差别是…...
XTU-OJ 1248-Alice and Bob
Alice和Bob在玩骰子游戏,他们用三颗六面的骰子,游戏规则如下: 点数的优先级是1点最大,其次是6,5,4,3,2。三个骰子点数相同,称为"豹子",豹子之间按点数优先级比较大小。如果只有两个骰子点数相同&…...

第四章 文件管理 十、文件系统的全局结构
目录 一、文件系统的建立 1、原始磁盘 2、物理格式化后 3、逻辑格式化后 二、文件系统在内存中的结构 三、系统调用背后的过程 一、文件系统的建立 1、原始磁盘 2、物理格式化后 物理格式化,即低级格式化――划分扇区,检测坏扇区,并用…...
【PythonGIS】基于高德Api实现批量地址查询经纬度
之前因为同事需要几千个小区的经纬度信息,所以就帮同事写了一段Python代码,通过调取高德地图的api实现地址查询经纬度这个功能。对于如何使用经纬度查询地址的方法,我之前分享过博文:【Python入门教程】获取图片可视化精准定位&am…...

vue数组中的变更方法和替换方法
变更方法: Vue 能够侦听响应式数组的变更方法,并在它们被调用时触发相关的更新。这些变更方法包括: push():在数组末尾添加一个或者多个元素,返回新的长度。 var arr [1, 2, 3, 4, 5]; // 定义一个数组 arr.push(6…...
Java - 工具类参数初始化
在做第三方接口调用时,经常需要根据不同的环境指定初始化的参数。以下做一个简单的记录。 一、使用static初始化 使用static初始化,仅会初始化一次,但无法从配置文件中获取参数。并且如果写了多个初始化工具类,会互相覆盖。 /**…...

一文搞懂 MineCraft 服务器启动操作和常见问题 2023年10月
文章目录 前言1. 新建文件夹2. 创建 bat 文件3. 编辑 bat 文件4. 启动服务器5. 恭喜完成 文章持续更新中,如果你有问题可以通过 qq 1317699264 获取免费协助,解决的问题将会被更新到本文章中 前言 无论你是使用服务端整合包,还是从上一篇我的…...

第2篇 机器学习基础 —(2)分类和回归
前言:Hello大家好,我是小哥谈。机器学习中的分类和回归都是监督学习的问题。分类问题的目标是将输入数据分为不同的类别,而回归问题的目标是预测一个连续的数值。分类问题输出的是物体所属的类别,而回归问题输出的是数值。本节课就…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...