当前位置: 首页 > news >正文

如何使用python快速修改Excel表单中的大量数据

python修改Excel中的内容进阶加速版

前面有一篇文章讲到了使用python处理Excel中的数据文件,即修改Excel中的数据,但是那个版本的代码跑点小规模、小数据量的excel还行,一旦数据量达到万条级别,代码运行会非常慢!因此,特意对之前的代码进行了优化,大幅的提升了代码的运行速率。

1、修改思路

首先是使用库的区别:操作Excel数据一般常用的两个库是OpenpyxlPandas

  • Openpyxl是一个用于读写Excel文件的Python库。它可以让你创建、修改和处理Excel文件,包括读取、写入、复制、剪切、替换等操作。Openpyxl可以处理xlsx、xlsm、xltx、xltm等Excel文件格式,并提供了丰富的API来进行数据操作和样式设置。
  • Pandas是一个用于数据分析数据处理的Python库。它提供了强大的数据结构和数据操作功能,特别是对于结构化数据的处理非常方便。Pandas可以读取和写入多种文件格式,包括Excel、CSV、JSON等。在数据处理方面,Pandas可以进行数据筛选、排序、聚合、合并等多种操作,并且支持处理缺失值和处理时间序列数据等常见问题。

总结来说,Openpyxl主要用于Excel文件的读写和操作,而Pandas则更适用于数据分析和数据处理。Openpyxl提供了更底层的操作,可以直接对Excel文件进行读写和样式设置,而Pandas则提供了更高层次的数据操作接口,方便处理和分析结构化数据。两者在功能和应用场景上有所区别,选择使用哪一个库取决于具体的需求和任务。

代码展示

使用openpyxl进行数据操作

import openpyxl# 打开Excel文件
workbook = openpyxl.load_workbook('变量信息.xlsx')# 选择要操作的工作表
worksheet = workbook.active# 遍历每一行
for row in worksheet.iter_rows():# 获取该行的第一个单元格的值cell_value = row[1].value# 如果该行的字符串以X开头,则将X替换为BJ1并拼接后续字符串,同时保存数据if cell_value and str(cell_value).startswith('X' or '1'):new_value = 'BJ1' + str(cell_value)[1:]row[1].value = new_valueworkbook.save('001.xlsx')print(new_value)if cell_value and str(cell_value).startswith('0'):new_value = 'BJ0' + str(cell_value)[1:]row[1].value = new_valueworkbook.save('001.xlsx')if cell_value and str(cell_value).startswith('9'):new_value = 'BJ9' + str(cell_value)[1:]row[1].value = new_valueworkbook.save('001.xlsx')# 否则遍历下一行else:continue

处理数据不会改变原先的数据格式和数据类型,但是运行速率较差

使用Pandas库进行数据修改

import pandas as pd# 读取Excel文件
df = pd.read_excel('KIC.xlsx')# 遍历每一行
for i, row in df.iterrows():# 获取该行的第一个单元格的值cell_value = row[1]# 如果该行的字符串以X或1开头,则将X或1替换为BJ1并拼接后续字符串if cell_value and str(cell_value).startswith(('X', '1')):new_value = 'BJ1' + str(cell_value)[1:]df.at[i, 'Column2'] = new_valueelif cell_value and str(cell_value).startswith('0'):new_value = 'BJ0' + str(cell_value)[1:]df.at[i, 'Column2'] = new_valueelif cell_value and str(cell_value).startswith('9'):new_value = 'BJ9' + str(cell_value)[1:]df.at[i, 'Column2'] = new_value# 将修改后的数据保存到新的Excel文件中
df.to_excel('KIC01.xlsx', index=False)

使用Pandas操作Excel数据运行速率非常快,但是会破坏Excel文件原先的文件格式

2、最终改进

要提升代码的运行速度,可以考虑以下几个方面的优化:
  1. 使用批量写入数据:在当前代码中,每次修改单元格后都会保存一次文件,这会导致频繁的磁盘操作,影响性能。可以将修改的数据先存储在一个临时的数据结构中,然后一次性写入到Excel文件中。
  2. 使用列表推导式生成器表达式替代循环:使用列表推导式或生成器表达式可以提供更高效的迭代方式,避免使用显式的循环。这样可以减少迭代次数,提升代码的执行速度。

下面是修改后的代码示例

import openpyxl# 打开Excel文件
workbook = openpyxl.load_workbook('KIC.xlsx')# 选择要操作的工作表
worksheet = workbook.active# 创建一个临时列表,用于存储修改后的数据
new_data = []# 遍历每一行
for row in worksheet.iter_rows():# 获取该行的第一个单元格的值cell_value = row[1].value# 如果该行的字符串以X开头,则将X替换为BJ1并拼接后续字符串,同时保存数据if cell_value and str(cell_value).startswith(('X', '1')):new_value = 'BJ1' + str(cell_value)[1:]elif cell_value and str(cell_value).startswith('0'):new_value = 'BJ0' + str(cell_value)[1:]elif cell_value and str(cell_value).startswith('9'):new_value = 'BJ9' + str(cell_value)[1:]else:# 如果不需要修改,则直接保存原始数据new_value = cell_value# 将修改后的数据添加到临时列表中new_data.append(new_value)# 将修改后的数据一次性写入Excel文件
for index, value in enumerate(new_data, start=1):worksheet.cell(row=index, column=2, value=value)# 保存修改后的Excel文件
workbook.save('KIC04.xlsx')

通过以上优化,代码将会更高效地执行,并提升运行速度。

相关文章:

如何使用python快速修改Excel表单中的大量数据

python修改Excel中的内容进阶加速版 前面有一篇文章讲到了使用python处理Excel中的数据文件,即修改Excel中的数据,但是那个版本的代码跑点小规模、小数据量的excel还行,一旦数据量达到万条级别,代码运行会非常慢!因此&…...

✔ ★【备战实习(面经+项目+算法)】 10.27学习

✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…...

视频分辨率/帧率/码率选择参考

1. 视频码率与分辨率的参考表 1080*720的分辨率,用5000K左右; 720*576的分辨率,用3500K左右; 640*480的分辨率,用1500K左右。 2. 计算公式 基本算法:码率(kb…...

LeetCode75——Day18

文章目录 一、题目二、题解 一、题目 1732. Find the Highest Altitude There is a biker going on a road trip. The road trip consists of n 1 points at different altitudes. The biker starts his trip on point 0 with altitude equal 0. You are given an integer …...

Java NIO 高并发开发

Java NIO 高并发开发 前言 Java NIO(New I/O)相比于传统的Java I/O(BIO)在高并发开发方面具有以下优势: 非阻塞模式:Java NIO使用非阻塞的I/O操作,允许一个线程管理多个通道(Channe…...

8.循环神经网络

#pic_center R 1 R_1 R1​ R 2 R^2 R2 目录 知识框架No.1 序列模型一、序列模型二、D2L代码注意点三、QA No.2 文本预处理一、D2L代码注意点二、QA No.3 语言模型一、语言模型二、D2L代码注意点三、QA No.4 循环神经网络 RNN一、RNN二、QA No.5 循环神经网络 RNN 的实现一、从零…...

[C++随想录] map和set的使用

map和set的使用 set初始化finderasecountlower_bound && upper_boundequal_ range mapinsert[ ]运算符 multiset && multimap set — — key模拟 map — — key_value模型 set 初始化 void set_test1() {set<int>s;s.insert(10);s.insert(12);s.insert(…...

公网IP怎么设置?公网ip有哪些优点和缺点?

随着互联网的普及&#xff0c;越来越多的人开始关注网络安全和隐私保护。其中&#xff0c;公网IP的设置成为了一个备受关注的话题。本文将详细介绍公网IP的设置方法以及公网IP的优点和缺点。 一、公网IP设置方法 1. 路由器设置 在家庭或企业网络中&#xff0c;路由器通常是最重…...

蓝桥杯第 2 场算法双周赛 第2题 铺地板【算法赛】c++ 数学思维

题目 铺地板https://www.lanqiao.cn/problems/5887/learning/?contest_id145 问题描述 小蓝家要装修了&#xff0c;小蓝爸爸买来了很多块&#xff08;你可以理解为数量无限&#xff09;2323 规格的地砖&#xff0c;小蓝家的地板是 nm 规格的&#xff0c;小蓝想问你&#xf…...

APScheduler-调度器 BackgroundScheduler

当你有主程序需要执行&#xff0c;让定时任务在后台执行时&#xff0c;可以用BackgroundScheduler from apscheduler.schedulers.background import BackgroundScheduler import time # 仅运行定时任务 scheduler BackgroundScheduler() # interval example, 间隔执行,…...

浅谈UI自动化测试

随着软件行业的不断发展&#xff0c;建立一个完善的自动化测试体系变得至关重要。目前&#xff0c;自动化测试主要涵盖接口自动化测试和UI自动化测试两个主要领域。就目前而言&#xff0c;企业在UI自动化测试方面的覆盖率仍然相对较低。 接口自动化测试可以模拟和执行应用程序…...

golang 工程组件 grpc-gateway—yaml定义http规则,和自定义实现网关路由

yaml定义http规则&#xff0c;和自定义实现网关路由 proto定义http规则总归是麻烦的&#xff0c;因为proto文件还是定义消息&#xff0c;grpc接口好一些。配置http规则有更好的方式。我们可以使用yaml文件定义接口的http规则。 同时有些接口不是只是让网关转发这么简单 有时需…...

在NLP中一下常见的任务,可以用作baseline;MRPC,CoLA,STS-B,RTE

1.MRPC&#xff08;Microsoft Research Paraphrase Corpus&#xff09;任务 是一个用于文本匹配和相似度判断的任务。在MRPC任务中&#xff0c;给定一对句子&#xff0c;模型需要判断它们是否是语义上等价的。MRPC任务的训练集和测试集由约5700对英语句子组成。每个句子对都有…...

【计算机网络笔记】Cookie技术

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…...

在虚拟环境中,通过pip安装tensorflow

目录 激活python虚拟环境&#xff0c;更新pip 通过pip 安装tensorflow 确定python版本&#xff1a; ​编辑安装tensorflow: ​编辑 为什么使用pip安装tensorflow? 激活python虚拟环境&#xff0c;更新pip 命令为python -m pip install --upgrade pip 通过pip 安装tensorf…...

【Django restframework】django跨域问题,解决PUT/PATCH/DELETE用ajax请求无法提交数据的问题

【Django restframework】django跨域问题&#xff0c;解决PUT/PATCH/DELETE用ajax请求无法提交数据的问题 1 问题描述&#xff1a; 我用restframework(ModelSerializerGenericApiView)开发了一组符合RestFul接口标准的接口&#xff0c;这意味着它将支持客户端发来的GET、POST、…...

神经网络与深度学习第四章前馈神经网络习题解答

[习题4-1] 对于一个神经元 &#xff0c;并使用梯度下降优化参数时&#xff0c;如果输入恒大于0&#xff0c;其收敛速度会比零均值化的输入更慢。 首先看一下CSDN的解释&#xff1a; 如果输入x恒大于0&#xff0c;使用sigmoid作为激活函数的神经元的输出值将会处于饱和状态&a…...

Go 语言操作 MongoDb

文章目录 连接数据库插入数据库插入一条数据批量插入数据 查询数据用 BSON 进行复合查询聚合查询 更新数据删除数据 连接数据库 package mainimport ("context""go.mongodb.org/mongo-driver/mongo""go.mongodb.org/mongo-driver/mongo/options"…...

UE4/5 竖排文字文本

方法一、使用多行文本组件 新建一个Widget Blueprint 添加Text 或者 Editable Text(Multi-Line) 、TextBox(Multi-Line) 组件。 添加文字&#xff0c;调整字号&#xff0c;调整成竖排文字。 在Wrapping &#xff08;换行&#xff09;面板中 &#xff1a; 勾选 Auto Wrap te…...

centos jdk 安装

1、oracle官网下载jdk8 https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html 2、楼主用的以前下载好的安装包jdk-8u111-linux-x64.gz。下载后使用工具如Xftp将安装包上传到/opt目录下&#xff0c;这里随便什么目录都行&#xff0c;并解压安装包。 c…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...