当前位置: 首页 > news >正文

直方图均衡化算法

直方图均衡化是一种图像处理算法,通过调整图像的灰度级分布,增强图像的对比度和细节。下面是直方图均衡化算法的基本步骤:

  1. 统计原始图像的灰度直方图:遍历整个图像,计算每个灰度级出现的频次。

  2. 计算累积直方图:对灰度直方图进行累加,得到每个灰度级及其之前所有灰度级的累积频次。

  3. 计算映射函数:将累积直方图归一化到期望的灰度范围(通常是0到255),得到一个映射函数。

  4. 应用映射函数:遍历原始图像,根据映射函数将每个像素的灰度值转换为新的灰度值。

  5. 生成均衡化后的图像:用转换后的灰度值替换原始图像中的相应像素值。

通过直方图均衡化,图像的灰度级分布会更加平坦,从而增加图像的对比度。这个过程可以使得图像细节更加清晰,使得暗部和亮部的细节都更容易观察到。需要注意的是,直方图均衡化可能会改变图像的整体色调,因此在应用之前,需要根据具体需求进行调整和评估。

以下是一个简单的直方图均衡化算法的例程,以Python语言为例:

import cv2
import numpy as npdef histogram_equalization(image):# 统计原始图像的灰度直方图hist, bins = np.histogram(image.flatten(), 256, [0,256])# 计算累积直方图cdf = hist.cumsum()cdf_normalized = cdf * hist.max() / cdf.max()# 计算映射函数mapping = np.interp(image.flatten(), bins[:-1], cdf_normalized)# 应用映射函数,生成均衡化后的图像equalized_image = mapping.reshape(image.shape).astype(np.uint8)return equalized_image# 读取原始图像
image = cv2.imread('input.jpg', 0)  # 灰度图像读取# 执行直方图均衡化
equalized_image = histogram_equalization(image)# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

相关文章:

直方图均衡化算法

直方图均衡化是一种图像处理算法,通过调整图像的灰度级分布,增强图像的对比度和细节。下面是直方图均衡化算法的基本步骤: 统计原始图像的灰度直方图:遍历整个图像,计算每个灰度级出现的频次。 计算累积直方图&#x…...

通过el-tree 懒加载树,创建国家地区四级树

全国四级行政地区树数据库sql下载路径:【免费】全国四级地区(省市县)数据表sql资源-CSDN文库https://download.csdn.net/download/weixin_51722520/88469807?spm1001.2014.3001.5503 我在后台获取地区信息添加了限制,只获取parentid为当前的地…...

Power BI 实现日历图,在一张图中展示天、周、月数据变化规律

《数据可视化》这本书里介绍了一个时间可视化的案例(如下图所示),以日历图的形式展示数据的变化,可以在一张图上同时观察到:(1)每一天的数据变化;(2)随周变化…...

C/C++计算表达式值 2020年12月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C计算表达式值 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C计算表达式值 2020年12月 C/C编程等级考试一级编程题 一、题目要求 计算(ab)*(c-b)的值 1、编程实现 给定3个整数a、b、c&…...

XTU-OJ 1258-矩阵

编写一个程序,将1~n2按行依次填入nn的矩阵,执行若干条行或者列的循环移动的指令,再将数字按行依次取出。 指令如下: 指令含义L x yx行循环左移y次R x yx行循环右移y次U x yx列循环上移y次D x yx列循环下移y次 输入 第一行是一个整…...

Django token 认证原理与实战

概述 cookie、session 与token 的区别 Cookie的作用 cookie的存储量很小,一般不超过4Kcookie并不会保存很多信息,一般用来存储登录状态cookie是以键值对进行表示的(keyvalue),例如nameli,表示cookie的名字是name,cookie携带的值是licookie的存储分为会…...

JVM虚拟机:Java对象的头信息有什么?

本文重点 在前面的课程中,我们学习了对象头,其中对象头包含Mark Word和class pointer,当然数组还会有一个数组长度。本文主要分析Mark Work中包含的信息。 Mark Word 以下两张图是一个意思: 32位 32位 64位 以上就是Mark Word会存储的信息,这个意思是说Java对象在不同…...

场效应管器件

在面试硬件方面的工作时,我们通常会被提问模电方面的知识。 场效应管简称FET,有三级:源极(S)、漏极(D)、栅极(G);可以实现电压控制电流源;“源极和漏极之间的漏极电流Id,由栅极的负电压进行控制…...

javascript之for循环介绍

javascript之for循环介绍 1)语法: for ([initialization]; [condition]; [final-expression]) { // code to be executed }1)initialization(初始化):在循环开始之前执行,通常用于设置循环计…...

【机器学习可解释性】3.部分依赖图

机器学习可解释性 1.模型洞察的价值2.特征重要性排列3.部分依赖图4.SHAP Value5.SHAP Value 高级使用 正文 每个特征怎么样影响预测结果? 部分依赖图 Partial Dependence Plots 虽然特征重要性显示了哪些变量对预测影响最大,但部分依赖图显示了特征如…...

在CARLA中手动开车,添加双目相机stereo camera,激光雷达Lidar

CARLA的使用逻辑: 首先创建客户端 设置如果2秒没有从服务器返回任何内容,则终止 client carla.Client("127.0.0.1", 2000) client.set_timeout(2.0) 从客户端中get world world client.get_world() 设置setting并应用 这里使用固定时…...

【VUE】ArcoDesign之自定义主题样式和命名空间

前言 Arco Design是什么? Arco Design 是由字节跳动推出的企业级产品的完整设计和开发解决方案前端组件库 官网地址:https://arco.design/同时也提供了一套开箱即用的中后台前端解决方案:Arco Design Pro(https://pro.arco.design/) Arco De…...

TVRNet网络PyTorch实现

文章目录 文章地址网络各层结构代码实现 文章地址 An End-to-End Traffic Visibility Regression Algorithm文章通过训练搜集得到的真实道路图像数据集(Actual Road dense image Dataset, ARD),通过专业的能见度计和多人标注,获得…...

opencv之坑(八)——putText中文乱码解决

opencv4.0之前版本和部分4.0版本的putText仅支持英文&#xff0c;如果中文会乱码&#xff0c;可以用下面方法构造函数解决&#xff1a; 头文件如下&#xff1a; #pragma once #ifndef PUTTEXT_H_ #define PUTTEXT_H_#include <windows.h> #include <string> #incl…...

nrf52832 开发板入手笔记:资料搜集

前言 最近翻箱&#xff0c;发现了两块几年前买的 NRF52832 与 NRF52840 的开发板&#xff0c;打算搭个 BLE 的开发环境 NRF52832 与 NRF51822 之前用过&#xff0c; NRF52840 没有用过&#xff0c;好像是 BLE4 与 BLE5 的区别吧 相关介绍 除了开发板&#xff0c;最重要的还是…...

PHP如何批量修改二维数组中值

每个name值加pex&#xff0c;age加5&#xff0c; 原数据&#xff1a; $data[["name">a,age>12],["name">b,age>22],["name">c,age>33],["name">d,age>44], ];实现效果 方案一、foreach引用方式 $data[["…...

Python 算法高级篇:归并排序的优化与外部排序

Python 算法高级篇&#xff1a;归并排序的优化与外部排序 引言 1. 归并排序的基本原理2. 归并排序的优化2.1 自底向上的归并排序2.2 最后优化 3. 外部排序4. 性能比较5. 结论 引言 在计算机科学中&#xff0c;排序是一项基本的任务&#xff0c;而归并排序&#xff08; Merge S…...

LeetCode--1991.找到数组的中间位置

1 题目描述 给你一个下标从 0 开始的整数数组 nums , 请你找到 最左边 的中间位置 middleIndex &#xff08;也就是所有可能中间位置下标最小的一个&#xff09; 中间位置 middleIndex 是满足 nums[0] nums[1] ... nums[middleIndex-1] nums[middleIndex1] nums[middleI…...

物联网数据采集网关连接设备与云平台的关键桥梁

随着工业4.0和智能制造的快速发展&#xff0c;物联网数据采集网关在工业物联网中的应用越来越广泛。物联网数据采集网关作为连接设备与云端之间的关键桥梁&#xff0c;能够实现高效、可靠、安全的数据传输和转换&#xff0c;为智能制造和工业4.0提供了强大的支持。 一、物联网…...

专家级数据恢复:UFS Explorer Professional Recovery Crack

UFS Explorer Professional Recovery - 一款功能强大且方便的数据恢复程序&#xff0c;支持检测大量文件系统、操作系统和各种类型的驱动器&#xff1a;从简单的闪存驱动器到复杂的复合存储&#xff08;各种级别的 RAID 阵列&#xff09;。 该程序由执业专家开发&#xff0c;并…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...