当前位置: 首页 > news >正文

致敬白衣天使,学习Python读取

名字:阿玥的小东东

学习:Python、c++

主页:阿玥的小东东

故事设定:现在学校要求对所有同学进行核酸采集,每位同学先在宿舍内等候防护人员(以下简称“大白”)叫号,叫到自己时去停车场排队等候大白对自己进行采集,采集完之后的样本由大白统一有序收集并储存。

名词解释:

  • 学生:所有的学生是一个大文件,每个学生是其中的一行数据
  • 宿舍:硬盘
  • 停车场:内存
  • 核酸采集:数据处理
  • 样本:处理后的数据
  • 大白:程序

学生数量特别少的情况

当学生数量特别少时,可以考虑将所有学生统一叫到停车场等候,再依次进行核酸采集。

方法一:简单情况

此时的程序可以模拟为:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import time

from typing import List

  

  

def pick_all_students(dorm: str) -> List[str]:

    with open(dorm, "rt", encoding="utf8") as fin:

        students = fin.readlines()

        return students

  

  

def pick_sample(student: str) -> str:

    time.sleep(0.01)

    sample = f"{student.strip()}'s sample"

    return sample

  

  

def process(dorm: str, sample_storeroom: str) -> None:

    with open(sample_storeroom, "wt", encoding="utf8") as fout:

        students = pick_all_students(dorm)

        for student in students:

            sample = pick_sample(student)

            fout.write(f"{sample}\n")

            fout.flush()

  

  

if __name__ == "__main__":

    process(

        "student_names.txt",

        "sample_storeroom.txt"

    )

注意,在第19行中,大白一次性把所有同学都叫到了停车场中。这种做法在学生比较少时做起来很快,但是如果学生特别多,停车场装不下怎么办?

停车场空间不够时怎么办?

方法二:边读边处理

一般来说,由于停车场空间有限,我们不会采用一次性把所有学生都叫到停车场中,而是会一个一个地处理,这样可以节约内存空间。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

import time

from typing import Iterator

  

  

def pick_one_student(dorm: str) -> Iterator[str]:

    with open(dorm, "rt", encoding="utf8") as fin:

        for student in fin:

            yield student

  

  

def pick_sample(student: str) -> str:

    time.sleep(0.01)

    sample = f"{student.strip()}'s sample"

    return sample

  

  

def process(dorm: str, sample_storeroom: str) -> None:

    with open(sample_storeroom, "wt", encoding="utf8") as fout:

        for student in pick_one_student(dorm):

            sample = pick_sample(student)

            fout.write(f"{sample}\n")

            fout.flush()

  

  

if __name__ == "__main__":

    process(

        "student_names.txt",

        "sample_storeroom.txt"

    )

这里pick_one_student函数中的返回值是用yield返回的,一次只会返回一名同学。

不过,这种做法虽然确保了停车场不会满员,但是这种做法在人数特别多的时候就不再适合了。虽然可以保证完成任务,但由于每次只能采集一个同学,程序的执行并不高。特别是当你的CPU有多个核时,会浪费机器性能,出现一核有难,其它围观的现象。

怎么加快执行效率?

大家可能也已经注意到了,刚刚我们的场景中,不论采用哪种方法,都只有一名大白在工作。那我们能不能加派人手,从而提高效率呢?

答案当然是可行的。我们现在先考虑增加两名大白,使得一名大白专注于叫号,安排学生进入停车场,另外一名大白专注于采集核酸,最后一名大白用于存储核酸样本。

方法三

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

import time

from multiprocessing import Queue, Process

from typing import Iterator

  

  

def pick_student(stu_queue: Queue, dorm: str) -> Iterator[str]:

    print("pick_student: started")

  

    picked_num = 0

    with open(dorm, "rt", encoding="utf8") as fin:

        for student in fin:

            stu_queue.put(student)

            picked_num += 1

            if picked_num % 500 == 0:

                print(f"pick_student: {picked_num}")

  

    # end signal

    stu_queue.put(None)

    print("pick_student: finished")

  

  

def pick_sample(student: str) -> str:

    time.sleep(0.01)

    sample = f"{student.strip()}'s sample"

    return sample

  

  

def process(stu_queue: Queue, store_queue: Queue) -> None:

    print("process: started")

  

    process_num = 0

    while True:

        student = stu_queue.get()

        if student is not None:

            sample = pick_sample(student)

            store_queue.put(sample)

            process_num += 1

            if process_num % 500 == 0:

                print(f"process: {process_num}")

        else:

            break

  

    # end signal

    store_queue.put(None)

    print("process: finished")

  

  

def store_sample(store_queue: Queue, sample_storeroom: str) -> None:

    print("store_sample: started")

  

    store_num = 0

    with open(sample_storeroom, "wt", encoding="utf8") as fout:

        while True:

            sample = store_queue.get()

            if sample is not None:

                fout.write(f"{sample}\n")

                fout.flush()

  

                store_num += 1

                if store_num % 500 == 0:

                    print(f"store_sample: {store_num}")

            else:

                break

  

    print("store_sample: finished")

  

  

if __name__ == "__main__":

    dorm = "student_names.txt"

    sample_storeroom = "sample_storeroom.txt"

  

    stu_queue = Queue()

    store_queue = Queue()

  

    store_p = Process(target=store_sample, args=(store_queue, sample_storeroom), daemon=True)

    store_p.start()

    process_p = Process(target=process, args=(stu_queue, store_queue), daemon=True)

    process_p.start()

    read_p = Process(target=pick_student, args=(stu_queue, dorm), daemon=True)

    read_p.start()

  

    store_p.join()

这份代码中,我们引入了多进程的思路,将每个大白看作一个进程,并使用了队列Queue作为进程间通信的媒介。stu_queue表示学生叫号进停车场的队列,store_queue表示已经采集过的待存储核酸样本的队列。

此外,为了控制进程的停止,我们在pick_student和 process函数的最后都向各自队列中添加了None作为结束标志符。

假设有1w名学生(student_names.txt文件有1w行),经过测试后发现上述方法的时间如下:

  • 方法一:1m40.716s
  • 方法二:1m40.717s
  • 方法三:1m41.097s

咦?不是做了分工吗?怎么速度还变慢了?经笔者观察,这是因为叫号的大白速度太快了(文件读取速度快)通常是TA已经齐活了,另外俩人还在吭哧吭哧干活呢,体现不出来分工的优势。如果这个时候我们对法二和法三的叫号做延时操作,每个学生叫号之后停滞10ms再叫下一位学生,则方法三的处理时间几乎不变,而方法二的时间则会延长至3m21.345s。

怎么加快处理速度?

上面提到,大白采核酸的时间较长,往往上一个人的核酸还没采完,下一个人就已经在后面等着了。我们能不能提高核酸采集这个动作(数据处理)的速度呢?其实一名大白执行一次核酸采集的时间我们几乎无法再缩短了,但是我们可以通过增加人手的方式,来达到这个目的。就像去银行办业务,如果开放的窗口越多,那么每个人等待的时间就会越短。这里我们也采取类似的策略,增加核酸采集的窗口。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

import time

from multiprocessing import Queue, Process, cpu_count

from typing import Iterator

  

  

def pick_student(stu_queue: Queue, dorm: str, num_workers: int) -> Iterator[str]:

    print("pick_student: started")

  

    picked_num = 0

    with open(dorm, "rt", encoding="utf8") as fin:

        for student in fin:

            stu_queue.put(student)

            picked_num += 1

            if picked_num % 500 == 0:

                print(f"pick_student: {picked_num}")

  

    # end signal

    for _ in range(num_workers):

        stu_queue.put(None)

  

    print("pick_student: finished")

  

  

def pick_sample(student: str) -> str:

    time.sleep(0.01)

    sample = f"{student.strip()}'s sample"

    return sample

  

  

def process(stu_queue: Queue, store_queue: Queue) -> None:

    print("process: started")

  

    process_num = 0

    while True:

        student = stu_queue.get()

        if student is not None:

            sample = pick_sample(student)

            store_queue.put(sample)

            process_num += 1

            if process_num % 500 == 0:

                print(f"process: {process_num}")

        else:

            break

  

    print("process: finished")

  

  

def store_sample(store_queue: Queue, sample_storeroom: str) -> None:

    print("store_sample: started")

  

    store_num = 0

    with open(sample_storeroom, "wt", encoding="utf8") as fout:

        while True:

            sample = store_queue.get()

            if sample is not None:

                fout.write(f"{sample}\n")

                fout.flush()

  

                store_num += 1

                if store_num % 500 == 0:

                    print(f"store_sample: {store_num}")

            else:

                break

  

    print("store_sample: finished")

  

  

if __name__ == "__main__":

    dorm = "student_names.txt"

    sample_storeroom = "sample_storeroom.txt"

    num_process = max(1, cpu_count() - 1)

  

    maxsize = 10 * num_process

    stu_queue = Queue(maxsize=maxsize)

    store_queue = Queue(maxsize=maxsize)

  

    store_p = Process(target=store_sample, args=(store_queue, sample_storeroom), daemon=True)

    store_p.start()

    process_workers = []

    for _ in range(num_process):

        process_p = Process(target=process, args=(stu_queue, store_queue), daemon=True)

        process_p.start()

        process_workers.append(process_p)

    read_p = Process(target=pick_student, args=(stu_queue, dorm, num_process), daemon=True)

    read_p.start()

  

    for worker in process_workers:

        worker.join()

  

    # end signal

    store_queue.put(None)

    store_p.join()

总耗时 0m4.160s !我们来具体看看其中的细节部分:

首先我们将CPU核数 - 3作为采核酸的大白数量。这里减3是为其它工作进程保留了一些资源,你也可以根据自己的具体情况做调整

这次我们在 Queue中增加了 maxsize参数,这个参数是限制队列的最大长度,这个参数通常与你的实际内存情况有关。如果数据特别多时要考虑做些调整。这里我采用10倍的工作进程数目作为队列的长度

注意这里pick_student函数中要为每个后续的工作进程都添加一个结束标志,因此最后会有个for循环

我们把之前放在process函数中的结束标志提取出来,放在了最外侧,使得所有工作进程均结束之后再关闭最后的store_p进程

结语

总结来说,如果你的数据集特别小,用法一;通常情况下用法二;数据集特别大时用法四。

相关文章:

致敬白衣天使,学习Python读取

名字:阿玥的小东东 学习:Python、c 主页:阿玥的小东东 故事设定:现在学校要求对所有同学进行核酸采集,每位同学先在宿舍内等候防护人员(以下简称“大白”)叫号,叫到自己时去停车场排…...

JVM - 认识JVM规范

目录 重识JVM JVM规范作用及其核心 JVM 整体组成 理解ClassFile结构 ASM开发 重识JVM JVM概述JVM: Java Virtual Machine,也就是Java虚拟机所谓虚拟机是指: 通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的计算机系统…...

文献阅读笔记 # CodeBERT: A Pre-Trained Model for Programming and Natural Languages

《CodeBERT: A Pre-Trained Model for Programming and Natural Languages》EMNLP 2020 (CCF-B)作者主要是来自哈工大、中山大学的 MSRA 实习生和 MSRA、哈工大的研究员。资源:code | pdf相关资源:RoBERTa-base | CodeNN词汇: bimodal: 双模态…...

openHarmony的UI开发

自适应布局 拉伸能力 ​ Blank在容器主轴方向上,空白填充组件具有自动填充容器空余部分的能力。仅当父组件为Row/Column时生效,即是线性布局。这样便可以在两个固定宽度或高度的组件中间添加一个Blank(),将剩余空间占满,从而实现…...

【JavaSE】深入HashMap

文章目录1. HashMap概述2. 哈希冲突3. 树化与退化3.1 树化的意义3.2 树的退化4. 二次哈希5. put方法源码分析6. key的设计7. 并发问题参考 如何防止因哈希碰撞引起的DoS攻击_hashmap dos攻击_双子孤狼的博客-CSDN博客 为什么 HashMap 要用 h^(h >>&#…...

华为机试题:HJ62 查找输入整数二进制中1的个数(python)

文章目录博主精品专栏导航知识点详解1、input():获取控制台(任意形式)的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() :打印输出。1、整型int() :将指定进制&#xf…...

代码随想录训练营一刷总结|

分为几个大部分: 数组 最先接触的部分,虽然说感觉是最简单的,但是需要掌握好基础,特别是小心循环。这里面需要再仔细看的就是螺旋矩阵那一块,其他的在后续刷的时候能用一种方法一次a就行。 链表 需要注意链表的基础…...

CSS中的几种尺寸单位

一、尺寸单位 CSS 支持多种尺寸单位,包括: px:像素,固定大小单位em:相对于当前元素字体大小的单位rem:相对于根元素(HTML)字体大小的单位%:相对于父元素的百分比单位vh…...

运维必会:ansible剧本(piaybook)

playbooks 概述以及实例操作 Playbooks 组成部分: Inventory Modules Ad Hoc Commands Playbooks Tasks: 任务,即调用模块完成的某些操作 Variables: 变量 Templates: 模板 Handlers: 处理器,由某时间触发执行的操作 Roles: 角色 YAML 介绍…...

活动星投票午间修身自习室制作在线投票投票制作网页

“午间修身自习室”网络评选投票_免费小程序投票推广_小程序投票平台好处手机互联网给所有人都带来不同程度的便利,而微信已经成为国民的系统级别的应用。现在很多人都会在微信群或朋友圈里转发投票,对于运营及推广来说找一个合适的投票小程序能够提高工…...

C#泛型:高级静态语言的效率利器

文章目录引入类型约束子类泛型常用的泛型数据结构前文提要: 💎超快速成,零基础掌握C#开发中最重要的概念💎抽丝剥茧,C#面向对象快速上手💎Winform,最友好的桌面GUI框架💎懂了委托&a…...

澳大利亚访问学者申请流程总结

澳大利亚访问学者申请需要注意些什么?下面知识人网小编整理澳大利亚访问学者申请流程总结。1、取得wsk英语成绩,现在都是先买票再上车了。2、联系外导,申请意向接收函(email)。3、向留学基金委CSC提出申请。4、获批后,申请正式邀请…...

cookie和Session的作用和比较

目录 什么是cookie cookie的工作原理 什么是session Session的工作原理 为什么会有session和cookie cookie和session如何配合工作 cookie和Session作用 什么是会话 什么是cookie cookie是web服务器端向我们客户端发送的一块小文件,该文件是干嘛的呢&#xf…...

测试员都是背锅侠?测试人员避“锅”攻略,拿走不谢

最近发生了一起生产事故,究其根源,事故本身属于架构或者需求层面需要规避的问题,测试人员的责任其实是非常小的,但实际情况是:相关测试人员因此承担了很大的压力,成为质量问题的“背锅侠”。 实际上&#…...

C++: C++模板<template>

C template content😊前言😁模板💕1、泛型编程😍2、函数模板😒2.1:函数模板概念👌2.2:函数模板的格式😘2.3:函数模板原理😁2.4:函数模…...

chmod命令详解

用法:chmod [选项]… 模式[,模式]… 文件…  或:chmod [选项]… 八进制模式 文件…  或:chmod [选项]… --reference参考文件 文件… Change the mode of each FILE to MODE. With --reference, change the mode of each FILE to that of R…...

状态机设计中的关键技术

⭐本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。 🔥文章和代码已归档至【Github仓库&#xf…...

单片机开发---ESP32S3移植NES模拟器(二)

书接上文 《单片机开发—ESP32-S3模块上手》 《单片机开发—ESP32S3移植lvgl触摸屏》 《单片机开发—ESP32S3移植NES模拟器(一)》 暖场视频,小时候称这个为—超级曲线射门!!!!!&am…...

微信小程序nodej‘s+vue警局便民服务管理系统

本文首先介绍了设计的背景与研究目的,其次介绍系统相关技术,重点叙述了系统功能分析以及详细设计,最后总结了系统的开发心得在Internet高速发展的今天,我们生活的各个领域都涉及到计算机的应用,其中包括“最多跑一次”微信小程序的网络应用,在外国小程序的使用已经是很普遍的方…...

第18章 MongoDB $type 操作符教程

MongoDB $type 操作符 描述 在本章节中,咱们将继续讨论MongoDB中条件操作符 $type。 $type操作符是基于BSON类型来检索集合中匹配的数据类型,并return 结果。 MongoDB 中可以使用的类型如下表所示: 类型数字备注Double1 String2 Object3…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...