LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV
BERT主要的创新之处
BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由Google在2018年提出。它的创新之处主要包括以下几个方面:
- 双向性(Bidirectional):BERT是第一个采用双向Transformer架构进行预训练的模型。传统的语言模型如GPT(Generative Pre-trained Transformer)只能根据上下文左边的词预测当前词,而BERT引入了Masked Language Model(MLM)任务,将一部分输入文本中的词进行遮盖,然后通过双向Transformer来预测这些被遮盖的词,从而使模型能够同时获得左侧和右侧的上下文信息。
- 预训练与微调(Pretraining and Fine-tuning):BERT采用两阶段的训练方法。首先,在大规模的未标记数据上进行预训练,通过预测被遮盖的词和句子级别的任务来学习通用的语言表示。然后,在特定任务上进行微调,使用标记的数据集来进一步调整模型参数,使其适应具体的下游任务,如文本分类、命名实体识别等。
- 预训练任务的多样性(Diverse Pretraining Tasks):为了提高模型的泛化能力,BERT使用了多个预训练任务。除了MLM任务外,BERT还引入了句子级别的任务,即Next Sentence Prediction(NSP)。NSP任务要求模型判断两个句子是否是连续的,并学习句子级别的语义关系。这样的多样性任务设计使得BERT能够学习到更丰富的语言表示。
- Masked Language Model(MLM):BERT中的MLM任务是通过将输入文本中的一部分词进行随机遮盖来训练模型。这样做的好处是模型需要通过上下文信息来预测被遮盖的词,从而更好地理解词之间的关联性和语义。MLM任务的引入使得BERT能够学习到更深层次的语言表示。
- 多层表示与多任务学习(Multi-layer Representation and Multi-task Learning):BERT采用了多层Transformer编码器来编码输入序列的信息。这些编码器层之间可以进行信息的传递和交互,从而丰富了表示的表达能力。同时,BERT还可以通过微调阶段的多任务学习来提高模型的泛化性能,将不同的下游任务作为辅助任务来共同训练模型,使得模型能够学习到更通用的语言表示。
注意力机制中的QKV
在注意力机制(Attention Mechanism)中,Q、K和V代表查询(Query)、键(Key)和值(Value)。
- 查询(Query)(表示为Q):查询是用于指定要关注的特定位置或特征的向量。在注意力机制中,查询向量用于计算与其他位置或特征的相似度,并决定在注意力权重计算中的重要程度。
- 键(Key)(表示为K):键向量用于提供与查询向量的相似度比较。它可以看作是提供参考信息的向量。
- 值(Value)(表示为V):值向量是根据注意力权重进行加权求和的向量。它包含了要传递给下一步的信息。
在注意力机制中,通过计算查询向量(Q)与键向量(K)之间的相似度,然后使用归一化的相似度得到注意力权重。最后,使用注意力权重对值向量(V)进行加权求和,得到最终的上下文表示或注意力输出。
注意力机制的计算可以用以下公式表示:
Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V
其中,d_k是查询和键的维度。softmax函数用于归一化相似度,使得注意力权重的总和为1。除以sqrt(d_k)是为了缩放相似度,以确保在计算过程中避免梯度爆炸或梯度消失的问题
相关文章:
LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV
BERT主要的创新之处 BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由Google在2018年提出。它的创新之处主要包括以下几个方面: 双向性(Bidirectional&…...
使用 @antfu/eslint-config 配置 eslint (包含兼容uniapp方法)
安装 pnpm i -D eslint antfu/eslint-config创建 eslint.config.js 文件 // 如果没有在 page.json 配置 "type": "module" const antfu require(antfu/eslint-config).default module.exports antfu()// 配置了 "type": "module" …...

我的架构复盘
1、背景 我目前公司研发中心担任软件研发负责人,研发中心分为3组,总共有30多人。研发中心主要开发各类生产辅助工具,比如巡检、安全教育等系统。系统不对外,只在公司内部使用。 就我个人来说,作为研发负责人…...
LangChain+LLM实战---LangChain中的6大核心模块
模型(Models) LLMs 大型语言模型,将文本字符串作为输入,并返回文本字符串作为输出。 聊天模型 聊天模型通常由语言模型支持,但它们的API更加结构化。这些模型将聊天消息列表作为输入,并返回聊天消息。 文本…...

【Android】Android Framework系列---CarPower电源管理
Android Framework系列—CarPower电源管理 智能座舱通常包括中控系统、仪表系统、IVI系统 、后排娱乐、HUD、车联网等。这些系统需要由汽车电源进行供电。由于汽车自身的特殊供电环境(相比手机方便的充电环境,汽车的蓄电池如果没有电是需要专业人士操作…...
io测试【FPGA】
按钮: 按钮是区分输入输出的, LED配置成输入,是不会亮的。 //timescale 1s/1ns // 【】是预编译,类似C语言的#include // 这是FPGA原语 //晶振时钟 1ns//类型声明 module LED //跟PLC的FB功能块一样,使用前需要实…...
vue项目中页面跳转传参的方法
在Vue项目中,你可以使用路由(vue-router)来实现页面跳转并传递参数。下面是一些常用的方法: 使用路由的params属性: 在目标页面的路由配置中,设置props: true来启用参数传递。在源页面中,使用th…...

论文速递 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统
注1:本文系“最新论文速览”系列之一,致力于简洁清晰地介绍、解读最新的顶会/顶刊论文 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统 原文链接:https://ieeexplore.ieee.org/abstract/document/10269067 本文提出了一种稳健的久坐行为监测系统RoSeFi。…...

Day 12 python学习笔记
模块 内置模块 sys模块 概述:Python 的 sys 模块提供访问解释器使用或维护的变量,和与解释器进行交互的函数。通俗来讲,sys 模块为程序与 Python 解释器的交互,提供了一系列的函数和变量,用于操控 Python 运行时的环境…...

DBA笔记(1)
目录 1、rpm yum 命令的使用,参数的含义 rpm命令: yum命令: 2、上传镜像至虚拟机搭建本地yum源 3、chown chomd 命令每一个参数的含义 chown命令: chmod命令: 4、fdisk partd 硬盘分区命令用法 fdisk命令&am…...

C++设计模式_15_Proxy 代理模式
Proxy 代理模式也是属于“接口隔离”模式,通过增加一层间接层来解决问题的模式。 文章目录 1. 动机( Motivation)2. 模式定义3. 结构( Structure )4. 代码演示Proxy 代理模式4.1 常规方法4.2 Proxy 代理模式 5. 要点总结6. 其他参考 1. 动机( Motivation) 在面向对…...

Go学习第十四章——Gin请求与响应
Go web框架——Gin请求与响应 1 响应1.1 String1.2 JSON(*)1.3 HTML(*)1.4 XML1.5 文件(*) 2 请求2.1 请求参数查询参数 (Query)动态参数 (Param)表单参数 (PostForm)原始参数 (GetRawData) 2.2 请求头2.3 …...

【多线程面试题十】、说一说notify()、notifyAll()的区别
文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官:说一说notify()、notify…...
【Element UI】解决 el-button 禁用状态下,el-tooltip 提示不生效问题
文章目录 问题描述解决方法 问题描述 关键代码: <el-tooltipcontent"一段提示内容"placement"bottom"effect"light":disabled"count > 100" ><el-buttontype"text"class"dl-button":dis…...
C++单元测试GoogleTest和GoogleMock十分钟快速上手(gtestgmock)
C单元测试GoogleTest和GoogleMock(gtest&gmock) 环境准备 下载 git clone https://github.com/google/googletest.git # 或者 wget https://github.com/google/googletest/releases/tag/release-1.11.0安装 cd googletest cmake CMakeLists.txt make sudo make instal…...
Starknet的去中心化路线图
1. 引言 StarkWare正以2条路线在迈向去中心化: planningimplementation 以让Starknet协议 走向 去中心化proof-of-stake协议。 Starknet向以太坊发送STARK proofs来验证其状态变更。 一年前Starknet就在做去中心化规划,相关提案见: Sim…...
python基础语法(十二)
目录 标准库认识标准库使用 import 导入模块代码示例: 字符串操作剑指offer 58, 翻转单词顺序题目题目做法代码 leetcode 796, 旋转字符串题目题目做法 leetcode 2255, 统计是给定字符串前缀的字符串数目题目题目做法 代码示例: 文件查找工具 感谢各位大佬对我的支持,如果我的文…...

【开源】基于SpringBoot的农村物流配送系统的设计和实现
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统登录、注册界面2.2 系统功能2.2.1 快递信息管理:2.2.2 位置信息管理:2.2.3 配送人员分配:2.2.4 路线规划:2.2.5 个人中心:2.2.6 退换快递处理:…...
【2024秋招】2023-9-16 贝壳后端开发一面
1 秒杀系统 1.1 如何抗住高并发 1.2 数据一致性你是怎么处理,根据场景来说明你的设计思路 1.3 你们当时系统的架构是怎么样的 秒杀表做节点隔离, 1.4 为了保证数据一致性,引入了redission的锁,你是为了抗住高并发而去为了引入…...

BI是什么?想要了解BI需要从哪些方面入手?
企业为了执行数字化战略,实行数字化转型,实现数据价值,除了需要相关数字化技术及理念、人才等,还需要借助数字化相关应用,例如商业世界中广受企业欢迎的ERP、OA、CRM等业务信息系统,以及上升势头非常迅猛的…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...