pandas 中如何按行或列的值对数据排序?
在处理表格型数据时,常会用到排序,比如,按某一行或列的值对表格排序,要怎么做呢?
这就要用到 pandas 中的 sort_values()
函数。
一、 按列的值对数据排序
先来看最常见的情况。
1.按某一列的值对数据排序
以下面的数据为例。
import pandas as pd
df_col = pd.DataFrame({'Name':['Paul','Richard', 'Betty', 'Philip','Anna'],'course1':[85,83,90,84,85],'course2':[90,82,79,71,86],'sport':['basketball', 'Volleyball', 'football', 'Basketball','baseball']},index=[1,2,3,4,5])df_col
Name | course1 | course2 | sport | |
---|---|---|---|---|
1 | Paul | 85 | 90 | basketball |
2 | Richard | 83 | 82 | Volleyball |
3 | Betty | 90 | 79 | football |
4 | Philip | 84 | 71 | Basketball |
5 | Anna | 85 | 86 | baseball |
在 sort_values()
函数中设置 by='列名'
,即可以按这一列值的顺序重新排列行。
df_sort=df_col.sort_values(by='course2')
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
4 | Philip | 84 | 71 | Basketball |
3 | Betty | 90 | 79 | football |
2 | Richard | 83 | 82 | Volleyball |
5 | Anna | 85 | 86 | baseball |
1 | Paul | 85 | 90 | basketball |
如以上结果所示,默认是升序排列。还可以做降序排列,在 sort_values()
函数中设置 ascending=False
即可。例如:
df_sort=df_col.sort_values(by='course2',ascending=False)
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
1 | Paul | 85 | 90 | basketball |
5 | Anna | 85 | 86 | baseball |
2 | Richard | 83 | 82 | Volleyball |
3 | Betty | 90 | 79 | football |
4 | Philip | 84 | 71 | Basketball |
2. 按多列的值对数据排序
您是否遇到过这种情况:要排序的某一列数据有相同的值,此时结果会怎么样呢?我们来看下面的例子。
df_sort=df_col.sort_values(by='course1')
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
2 | Richard | 83 | 82 | Volleyball |
4 | Philip | 84 | 71 | Basketball |
1 | Paul | 85 | 90 | basketball |
5 | Anna | 85 | 86 | baseball |
3 | Betty | 90 | 79 | football |
从结果看到,“course1” 有两个相同的值 85,此时会依据 index 的先后顺序排列。
那如果不想按 index 顺序,想要自己设定相同值的排序方式,应该怎么做呢?
可以设置第二列,对于第一列的相同值,参照第二列的值排序。例如:
df_sort=df_col.sort_values(by=['course1','course2'])
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
2 | Richard | 83 | 82 | Volleyball |
4 | Philip | 84 | 71 | Basketball |
5 | Anna | 85 | 86 | baseball |
1 | Paul | 85 | 90 | basketball |
3 | Betty | 90 | 79 | football |
可以看到,by
参数中的第二列 “course2” 只在第一列 “course1” 中有相同值时起作用,因此只有 “Anna” 和 “Paul” 所在的这两行数据位置互换,其它行位置不变。
3. key 参数:设置排序时的数据变换函数
在实际中还可能会遇到这种情况,数据中大小写都有,比如例子数据的 “sport” 列。按这一列对数据排序,结果如下:
df_sort=df_col.sort_values(by=['sport'])
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
4 | Philip | 84 | 71 | Basketball |
2 | Richard | 83 | 82 | Volleyball |
5 | Anna | 85 | 86 | baseball |
1 | Paul | 85 | 90 | basketball |
3 | Betty | 90 | 79 | football |
看结果发现,大写字母排在小写字母前面,因此 “Volleyball” 所在行排在 “baseball” 所在行前面,但这并不是我们想要的排序结果。那应该怎么做,才能按字母顺序排序呢?
可以设置 sort_values()
函数的 key
参数。
df_sort=df_col.sort_values(by=['sport'],key=lambda col:col.str.lower())
df_sort
Name | course1 | course2 | sport | |
---|---|---|---|---|
5 | Anna | 85 | 86 | baseball |
1 | Paul | 85 | 90 | basketball |
4 | Philip | 84 | 71 | Basketball |
3 | Betty | 90 | 79 | football |
2 | Richard | 83 | 82 | Volleyball |
此时的排序结果就是按字母顺序排列。
4. 修改原数据
前面介绍的操作中,每次都生成了一个新的数据 df_sort
,并没有改变原数据。
df_col
Name | course1 | course2 | sport | |
---|---|---|---|---|
1 | Paul | 85 | 90 | basketball |
2 | Richard | 83 | 82 | Volleyball |
3 | Betty | 90 | 79 | football |
4 | Philip | 84 | 71 | Basketball |
5 | Anna | 85 | 86 | baseball |
但是,有时可能数据太大,而原数据后续不再使用。为了节省空间,想直接在原数据上改动。应该怎么办呢?
只要在 sort_values()
函数中设置 inplace=True
。
df_col.sort_values(by='course2',inplace=True)
df_col
Name | course1 | course2 | sport | |
---|---|---|---|---|
4 | Philip | 84 | 71 | Basketball |
3 | Betty | 90 | 79 | football |
2 | Richard | 83 | 82 | Volleyball |
5 | Anna | 85 | 86 | baseball |
1 | Paul | 85 | 90 | basketball |
二、 按行的值对数据排序
需要注意的是,这种情况只适用于各列数据类型相同的情况,例如下面例子中的数据,每一列数据都是数值型。而前面例子的数据既有数值型,又有字符型,无法按行的值排序。
df_row = pd.DataFrame({'course1':[91,85,90,84,92],'course2':[72,81,76,71,79],'course3':[93,85,88,94,86]},index=['Paul','Richard', 'Betty', 'Philip','Anna'])
df_row
course1 | course2 | course3 | |
---|---|---|---|
Paul | 91 | 72 | 93 |
Richard | 85 | 81 | 85 |
Betty | 90 | 76 | 88 |
Philip | 84 | 71 | 94 |
Anna | 92 | 79 | 86 |
按行的值排序时,设置 by
参数为某行的 index 名,并且 axis=1
。
df_sort=df_row.sort_values(by='Anna',axis=1)
df_sort
course2 | course3 | course1 | |
---|---|---|---|
Paul | 72 | 93 | 91 |
Richard | 81 | 85 | 85 |
Betty | 76 | 88 | 90 |
Philip | 71 | 94 | 84 |
Anna | 79 | 86 | 92 |
按行值排序在 sort_values()
函数中设置 ascending
, key
, inplace
等参数的方式都与前面介绍的按列值排序相同。这里仅以按多行的值对数据排序为例。
df_sort=df_row.sort_values(by=['Richard','Paul'],axis=1,ascending=False)
df_sort
course3 | course1 | course2 | |
---|---|---|---|
Paul | 93 | 91 | 72 |
Richard | 85 | 85 | 81 |
Betty | 88 | 90 | 76 |
Philip | 94 | 84 | 71 |
Anna | 86 | 92 | 79 |
参考
1.https://www.geeksforgeeks.org/sort-rows-or-columns-in-pandas-dataframe-based-on-values/#courses
2.https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html
本文对您有帮助的话,请点赞支持一下吧,谢谢!
关注我 宁萌Julie,互相学习,多多交流呀!
相关文章:
pandas 中如何按行或列的值对数据排序?
在处理表格型数据时,常会用到排序,比如,按某一行或列的值对表格排序,要怎么做呢? 这就要用到 pandas 中的 sort_values() 函数。 一、 按列的值对数据排序 先来看最常见的情况。 1.按某一列的值对数据排序 以下面…...
「牛客网C」初学者入门训练BC139,BC158
🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️🔥专栏系列:线性代数,C初学者入门训练 🔥座右铭:“不要等到什么都没有了,才下定决心去做” 🚀🚀🚀大家觉不错…...

【深度学习】线性回归、逻辑回归、二分类,多分类等基础知识总结
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言1. 线性回归2、逻辑回归3. 单层神经元的缺陷&多层感知机softmax 多分类最后再来一个 二分类的例子前言 入行深度学习快2年了,是时间好好总结下基础知识了.现…...

【MySQL】调控 字符集
一、 MySQL 启动选项 & 系统变量 启动选项 是在程序启动时我们程序员传递的一些参数,而 系统变量 是影响服务器程序运行行为的变量 1.1 启动项 MySQL 客户端设置项包括: 允许连入的客户端数量 、 客户端与服务器的通信方式 、 表的默认存储引擎 、…...

FME+YOLOV7写DNF自动刷图脚本
目录 前言 一、难点分析 二、实现流程 1.DNF窗口位置获取 2.获取训练数据 3.数据标注 4.数据格式转换 5.数据训练 5.刷图逻辑编写 前言 这是一篇不务正业的研究,首先说明,这不是外挂!这不是外挂!这不是外挂!这只是用a…...
Java语法面试题
多线程锁 Synchronized:一次只能被一个线程占有ReadWriteLock:被多个线程持有,写锁只能被一个线程占有ReentrantLock:一个线程的多个流程能获取同一把锁,就是可重入锁,即在一个线程中可以被重复的获取自旋锁…...

location
目录 匹配的目标 格式 匹配符号: 优先级 要表达不匹配条件,则用 if 实现 例子:根目录的匹配最弱 例子:区分大小写 和 不区分大小写 例子:以根开头 和 不区分大小写 例子:等号 匹配的目标 ng…...
简述RBAC模型
RBAC(Role-Based Access Control)模型是一种常用的访问控制模型,用于管理和控制用户对系统资源的访问权限。RBAC模型通过将用户分配给角色,并授予角色相应的权限,来实现安全的资源访问管理。 在RBAC模型中,…...

倒计时2天:中国工程院院士谭建荣等嘉宾确认出席,“警务+”时代来临...
近日伴随公安部、科技部联合印发通知,部署推进科技兴警三年行动计划(2023-2025年),现代科技手段与警务工作相结合的方式,正式被定义为未来警务发展的新趋势。 21世纪以来,随着科技的不断发展和创新…...

Python蓝桥杯训练:基本数据结构 [哈希表]
Python蓝桥杯训练:基本数据结构 [哈希表] 文章目录Python蓝桥杯训练:基本数据结构 [哈希表]一、哈希表理论基础知识1、开放寻址法2、链式法二、有关哈希表的一些常见操作三、力扣上面一些有关哈希表的题目练习1、[有效的字母异位词](https://leetcode.cn…...
MacOS 配置 Fvm环境
系统环境:MacOS 13,M1芯片 1. 安装HomeBrew: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" speed 2. 使用brew安装Fvm: brew tap leoafarias/fvm brew install fvm 3…...
Python小白入门- 01( 第一章,第1节) 介绍 Python 编程语言
1. 介绍 Python 编程语言 1.1 Python 是什么 Python 是一种高级的、解释型、面向对象的编程语言,具有简洁、易读、易写的语法特点。Python 由 Guido van Rossum 于 1989 年在荷兰创造,并于 1991 年正式发布。 Python 语言广泛应用于数据科学、Web 开发、人工智能、自动化测…...
高并发系统设计之缓存
本文已收录至Github,推荐阅读 👉 Java随想录 这篇文章来讲讲缓存。缓存是优化网站性能的第一手段,目的是让访问速度更快。 说起缓存,第一反应可能想到的就是Redis。目前比较好的方案是使用多级缓存,如CPU→Ll/L2/L3→…...

【N32WB03x SDK使用指南】
【N32WB03x SDK使用指南】1. 简介1.1 产品简介1.2 主要资源1.3 典型应用2. SDK/开发固件文件目录结构2.1 doc2.2 firmware2.3 middleware2.4 utilities2.5 projects Projects3. 项目配置与烧录3.1 编译环境安装3.2 固件支持包安装3.3 编译环境配置3.4 编译与下载3.5 BLE工程目录…...

pytest测试框架——pytest.ini用法
这里写目录标题一、pytest用法总结二、pytest.ini是什么三、改变运行规则pytest.inicheck_demo.py执行测试用例四、添加默认参数五、指定执行目录六、日志配置七、pytest插件分类八、pytest常用插件九、改变测试用例的执行顺序十、pytest并行与分布式执行十一、pytest内置插件h…...
KAFKA安装与配置(带Zookeeper)2023版
KAFKA安装与配置(带Zookeeper) 一、环境准备: Ubuntu 64位 22.04,三台 二、安装JDK1.8 下载JDK1.8,我这边用的版本是jdk1.8.0_2022、解压jdk tar -zxvf jdk1.8.0_202.tar.gz 3、在/usr/local创建java文件夹,并将解压的jdk移动到/usr/local/java sudo mv jdk1.8.0_202…...

深入浅出解析ChatGPT引领的科技浪潮【AI行研商业价值分析】
Rocky Ding写在前面 【AI行研&商业价值分析】栏目专注于分享AI行业中最新热点/风口的思考与判断。也欢迎大家提出宝贵的意见或优化ideas,一起交流学习💪 大家好,我是Rocky。 2022年底,ChatGPT横空出世,火爆全网&a…...
.net 批量导出文件,以ZIP压缩方式导出
1. 首先Nuget ICSharpCode.SharpZipLib <script type"text/javascript">$(function () {$("#OutPutLink").click(function () { // 单击下文件时$.ajax({ // 先判断条件时间内没有文件url: "/Home/ExistsFile?statTime" $(&q…...

数据分析:某电商优惠卷数据分析
数据分析:某电商优惠卷数据分析 作者:AOAIYI 专栏:python数据分析 作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页 😊😊😊如果觉得文章不错或能帮助到你学习,可…...

性能测试流程
性能测试实战一.资源指标分析1.判断CPU是否瓶颈的方法2.判断内存是否瓶颈的方法3.判断磁盘I/O是否瓶颈的方法4.判断网络带宽是否是瓶颈的方法二.系统指标分析三.性能调优四.性能测试案例1.项目背景2.实施规划(1)需求分析(2)测试方…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...