当前位置: 首页 > news >正文

【Python机器学习】零基础掌握PolynomialCountSketch内核近似特征

面临挑战的机器学习模型:如何提高准确性?

在实际应用中,机器学习模型常常面临一个问题:如何在保持模型复杂性不变的情况下,提高模型的准确性?特别是在处理高维数据集时,这个问题尤为突出。这里,有一种名为“核方法”的技术可以解决这个问题,但通常会增加计算成本。那有没有办法同时达到提高准确性和降低计算成本的双赢局面呢?

这次要介绍的算法就是一个解决方案,它叫做PolynomialCountSketch,这个算法来自sklearn.kernel_approximation库。通过这个算法可以近似地模拟出多项式核方法的效果,但计算成本却大大降低。

假设在一个信用评分系统中,有以下几个影响信用评分的因素:

年龄收入工作年限信用卡还款次数
255000210
4570002050
3560001020

通过PolynomialCountSketch,对这些因素进行特征转换,并使用随机梯度下降分类器(SGDClassifier)进行训练,算法能在保持准确性的同时有效降低计算成本,是解决高维数据问题的一个非常有效的工具。

文章目录

相关文章:

【Python机器学习】零基础掌握PolynomialCountSketch内核近似特征

面临挑战的机器学习模型:如何提高准确性? 在实际应用中,机器学习模型常常面临一个问题:如何在保持模型复杂性不变的情况下,提高模型的准确性?特别是在处理高维数据集时,这个问题尤为突出。这里,有一种名为“核方法”的技术可以解决这个问题,但通常会增加计算成本。那…...

【Linux】深入理解系统文件操作(1w字超详解)

1.系统下的文件操作: ❓是不是只有C\C有文件操作呢?💡Python、Java、PHP、go也有,他们的文件操作的方法是不一样的啊 1.1对于文件操作的思考: 我们之前就说过了:文件内容属性 针对文件的操作就变成了对…...

echarts柱状图和折线图双图表配置项

{tooltip: {trigger: axis,axisPointer: { // 坐标轴指示器,坐标轴触发有效type: cross // 默认为直线,可选为:line | shadow}},legend: {data: [新增客户数, 新增客户两年内回款情况],type: scroll,selectedMode: false // 控制是否可以通过…...

【LVS实战】02 搭建一个LVS-NAT实验

一、网络结构 用虚拟机搭建如下的几台机器,并配置如下的ip 关于虚拟机网卡和网络的配置,可以参考 iptables章节,05节:网络转发实验 主机A模拟外网的机器 B为负载均衡的机器 C和D为 RealServer 二、C和D主机的网关设置 C和D机…...

2023.10.26-SQL测试题

employee表: department表: job表: location表: 题目及答案: -- (1).查询工资大于一万的员工的姓名(first_name与last_name用“.”进行连接)和工资-- select CONCAT(first_name,.,last_name) as 姓名 ,salary -…...

JVM虚拟机:从结构到指令让你对栈有足够的认识

本文重点 在前面的课程中,我们学习了运行时数据区的大概情况,从本文开始,我们将对一些组件进行详细的介绍,本文我们将学习栈。栈内存主管java的运行,是在线程创建时创建的,它是线程私有的,它的生命周期是跟随线程的生命期,也就是说线程结束栈内存就释放了,对于栈来说…...

【启发式算法】白鲸优化算法【附python实现代码】

写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 路虽远,行则将至&#…...

【Python机器学习】零基础掌握RBFSampler内核近似特征

有没有想过如何在复杂的数据集上快速进行分类? 在现实生活中,大量的数据集通常非常复杂,并不总是线性可分的。例如,在医疗领域,诊断患者是否患有某种疾病通常涉及多个变量和复杂的模式。简单的线性模型可能无法有效地处理这种复杂性。 一种可能的解决方案是使用更复杂的…...

高级工技能等级认定---网络设备安全

目录 一、DHCP 安全配置 二、SSH配置 三、标准ACL的配置 四、配置交换机端口安全 五、三层交换和ACL的配置 一、DHCP 安全配置 配置要求: 1.给交换机配置enable密码. 2.在交换机上创建VLAN 100,将F0/1-3口改为Access口,并加入到VLAN …...

spting Boot常见知识点

31.介绍一下 SpringBoot,有哪些优点? 1、Spring Boot 基于 Spring 开发,Spirng Boot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。它并不是用来替代 Spring 的解…...

大模型在数据分析场景下的能力评测

“你们能对接国产大模型吗?” “开源的 LLaMA 能用吗,中文支持怎么样?” “私有化部署和在线服务哪个更合适?” 自 7 月 14 日发布 AI 数智助理 Kyligence Copilot 后,我们收到了很多类似上面的咨询,尤其…...

[笔记] 关于y1变量取名冲突的问题

参考博客 遇到的问题和这位老哥的一模一样。 结论是:当我们用math头文件的时候,不能在全局定义 y0 和 y1,j0、j1、jn、yn。...

js笔记(函数参数、面向对象、装饰器、高级函数、捕获异常)

JavaScript 笔记 函数参数 默认参数 在 JavaScript 中,我们可以为函数的参数设置默认值。如果调用函数时没有传递参数,那么参数将使用默认值。 function greet(name World) {console.log(Hello, ${name}!); }greet(); // 输出:Hello, Wo…...

Istio实战(八)- Istio 动态准入 Webhook 配置

准入 Webhook 是 HTTP 方式的回调,接收准入请求并对其进行相关操作。 可定义两种类型的准入 Webhook,Validating 准入 Webhook 和 Mutating 准入 Webhook。使用 Validating Webhook,可以通过自定义的准入策略来拒绝请求; 使用 Mut…...

Vue的安装

----------------------------------------------------前置---------------------------------------------------- 1.node.js的下载安装、缓存路径的设置 ①安装 ②设置npm prefix, cache 2.NODE_PATH、PATH ①系统变量中加 ②PATH中加 3.配置镜像源 -----------------------…...

macOS M1安装wxPython报错

macOS12.6.6 M1安装wxPython失败: 报错如下: imagtiff.cpp:37:14: fatal error: tiff.h file not found解决办法: 下载源文件重新编译(很快,5分钟全部搞定),分三步走: 第一步&…...

【数据结构】交换排序

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 冒泡、快速排序 1. 冒泡排序2. 快速…...

腾讯云2023年双11服务器优惠活动及价格表

腾讯云2023年双11大促活动正在火热进行中,腾讯云推出了一系列服务器优惠活动,云服务器首年1.8折起,买1年送3个月!境外云服务器15元/月起,买更多省更多!下面给大家分享腾讯云双11服务器优惠活动及价格表&…...

PointNet++复现、论文和代码研读

文章目录 复现1.创建虚拟环境并进入2.安装pytorch3.分割模型的训练和测试3.1.下载数据处理数据3.2.训练分割模型3.3分割模型的测试 4.分类模型的训练和测试 论文研读制作自己的数据集流程分割模型数据集准备 复现 https://github.com/yanx27/Pointnet_Pointnet2_pytorch 1.创…...

轨迹规划 | 图解路径跟踪PID算法(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 PID控制基本原理2 基于PID的路径跟踪3 仿真实现3.1 ROS C实现3.2 Python实现3.3 Matlab实现 0 专栏介绍 🔥附C/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等)&a…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐)​​ 在 save_images 方法中,​​删除或注释掉所有与 metadata …...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...