Transformer英语-法语机器翻译实例
依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。
data_path = "weibo_senti_100k.csv"
data_list = open(data_path,"r",encoding='UTF-8').readlines()[1:]
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
decoder = TransformerDecoder(len(tgt_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)loss 0.030, 5244.8 tokens/sec on cuda:0
图11.2 在英语-法语机器翻译数据集上训练Transformer模型
训练结束后,使用Transformer模型将一些英语句子翻译成法语,并且计算它们的BLEU分数。
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
结果如下:
go . => va !, bleu 1.000
i lost . => j'ai perdu ., bleu 1.000
he's calm . => il est calme ., bleu 1.000
i'm home . => je suis chez moi ., bleu 1.000
当进行最后一个英语到法语的句子翻译工作时,需要可视化Transformer的注意力权重。编码器自注意力权重的形状为[编码器层数,注意力头数,num_steps或查询的数目,num_steps或“键-值”对的数目]。
enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape((num_layers, num_heads,-1, num_steps))
enc_attention_weights.shape
结果如下:
torch.Size([2, 4, 10, 10])
在编码器的自注意力中,查询和键都来自相同的输入序列。由于填充词元是不携带信息的,因此通过指定输入序列的有效长度,可以避免查询与使用填充词元的位置计算注意力。接下来,将逐行呈现两层多头注意力的权重。每个注意力头都根据查询、键和值不同的表示子空间来表示不同的注意力,如图11.3所示。
d2l.show_heatmaps(enc_attention_weights.cpu(), xlabel='Key positions',ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],figsize=(7, 3.5))
图11.3 4头注意力模型
为了可视化解码器的自注意力权重和编码器-解码器的注意力权重,我们需要完成更多的数据操作工作。
例如,用零填充被遮蔽住的注意力权重。值得注意的是,解码器的自注意力权重和编码器-解码器的注意力权重都有相同的查询,即以序列开始词元(Beginning-Of-Sequence,BOS)打头,再与后续输出的词元共同组成序列。
dec_attention_weights_2d = [head[0].tolist()
for step in dec_attention_weight_seq
for attn in step for blk in attn for head in blk]
dec_attention_weights_filled = torch.tensor(pd.DataFrame(dec_attention_weights_2d).fillna(0.0).values)
dec_attention_weights = dec_attention_weights_filled.reshape((-1, 2, num_layers, num_heads, num_steps))
dec_self_attention_weights, dec_inter_attention_weights = \dec_attention_weights.permute(1, 2, 3, 0, 4)
dec_self_attention_weights.shape, dec_inter_attention_weights.shape
结果如下:
(torch.Size([2, 4, 6, 10]), torch.Size([2, 4, 6, 10]))
由于解码器自注意力的自回归属性,查询不会对当前位置之后的键-值对进行注意力计算。结果如图11.4所示。
# Plusonetoincludethebeginning-of-sequencetoken
d2l.show_heatmaps(dec_self_attention_weights[:, :, :, :len(translation.split()) + 1],xlabel='Key positions', ylabel='Query positions',titles=['Head %d' % i for i in range(1, 5)], figsize=(7, 3.5))
图11.4 查询不会对当前位置之后的键-值对进行注意力计算
与编码器的自注意力的情况类似,通过指定输入序列的有效长度,输出序列的查询不会与输入序列中填充位置的词元进行注意力计算。结果如图11.5所示。
d2l.show_heatmaps(dec_inter_attention_weights, xlabel='Key positions',ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],figsize=(7, 3.5))
图11.5 指定输入序列的有效长度的4头注意模型
尽管Transformer结构是为了序列到序列的学习而提出的,Transformer编码器或Transformer解码器通常被单独用于不同的深度学习任务中。
节选自《Python深度学习原理、算法与案例》。
相关文章:

Transformer英语-法语机器翻译实例
依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。 da…...

21.12 Python 实现网站服务器
Web服务器本质上是一个提供Web服务的应用程序,运行在服务器上,用于处理HTTP请求和响应。它接收来自客户端(通常是浏览器)的HTTP请求,根据请求的URL、参数等信息生成HTTP响应,并将响应返回给客户端ÿ…...
Leetcode.274 H 指数
题目链接 Leetcode.274 H 指数 mid 题目描述 给你一个整数数组 c i t a t i o n s citations citations ,其中 c i t a t i o n s [ i ] citations[i] citations[i] 表示研究者的第 i i i 篇论文被引用的次数。计算并返回该研究者的 h h h 指数。 根据维基百科…...
订单BOM放哪儿?(我的APS项目二)
供应商的小伙伴带来了一个全新的架构,在服务器提供的服务中,有一个对象模型服务,就是数据内存对象;这个方式确实是我在其它架构中没有见到过的。可惜,最初的版本,我们的订单BOM被设计到放在内存对象中。我对…...

从0到1之微信小程序快速入门(03)
目录 什么是生命周期函数 WXS脚本 编辑 与 JavaScript 不同 纯数据字段 组件生命周期 定义生命周期方法 代码示例 组件所在页面的生命周期 代码示例 插槽 什么是插槽 启用多插槽 编辑 定义多插槽 组件通信 组件间通信 监听事件 触发事件 获取组件实例 自…...
【面试高高手】—— docker面试题
文章目录 1. 什么是Docker?它有什么作用?2.Docker容器和虚拟机之间有什么区别?3.如何创建一个Docker容器?4.Docker镜像和容器的区别是什么?5.什么是Dockerfile?能够详细说明下吗?6.什么是Docker Compose&a…...

mac电脑怎么永久性彻底删除文件?
Mac老用户都知道在我们查看Mac内存时都会发现有一条“其他文件”占比非常高,它是Mac储存空间中的“其他”数据包含不可移除的移动资源,如,Siri 语音、字体、词典、钥匙串和 CloudKit 数据库、系统无法删除缓存的文件等。这些“其他文件”无用…...

MySQL(2):环境搭建
1.软件下载 软装去官网下载(社区版):https://downloads.mysql.com/archives/installer/(历史版本可选) 选择下面的,一步到位 2.软件安装 双击 .msi 文件 选完 Custom 自定义后点 next 按 1,…...

Android平台GB28181执法记录仪技术方案
技术背景 我们在做Android平台GB28181设备接入模块的时候,对接过好多开发者,他们都是用于执法记录仪场景,执法记录仪是一种便携式设备,用于记录执法人员的行动和接触情况,通过实时回传音视频数据和实时位置信息给指挥…...

【已解决】VSCode运行C#控制台乱码显示
问题描述 如上图所示,最近在学习C#突然发现我在运行Hello World的时候出现这样的乱码情况。 分析原因 主要是因为VS Code 是UTF-8的编码格式,而我们的PC是Unicode编码,所以我们需要对其进行一个统一即可解决问题。那么知道这个的问题那就开…...

MySQL扩展语句和约束条件
MySQL扩展语句 create TABLE if not exists ky32 (id int(4) zerofill primary key auto_inc rement, #表示该字段可以自增长,默认从1开始每条记录会自动递增1name varchar(10) not null,cradid int(10) not null unique key,hobby varchar (50))&#x…...
Java排序学习
int[] 数组排序 升序排序: Arrays.sort(num);降序排序: num IntStream.of(num) // 变为 IntStream.boxed() // 变为 Stream<Integer>.sorted(Comparator.reverseOrder()) // 按自然序相反排序.mapToInt(Integer::intValue) …...

《2023中国社交媒体平台指南》丨附下载_三叠云
✦ ✦✦ ✦✦ ✦✦ ✦ KAWO发布的《2023中国社交媒体平台指南》,对中国社交媒发展情况、八大社交媒体平台做出详细分析,为营销人员提供了布局社交媒体的实操性指南。 社交媒体八大趋势: 1.社交媒体搜索引擎化 除了社交媒体上发表的内容会被…...

【unity小技巧】unity排序问题的探究
文章目录 前言一、排序图层二、sorting Group的使用三、树木排序设计方法一 代码控制方法二 拆分图片方法三 透视排序1. 普通物品排序2. TileMap瓦片排序设计 完结 前言 unity的排序问题其实之前分享的项目多多少少都有提到一点,但是没有单独拿出来说,所…...

为什么会被【禅道】工具的公司提出QQ群的反思…………
周末备份Gitlab的代码库,把Gitlab更新到了最新的16.5。顺带看了禅道官网出了最新版本18.8。但是禅道的升级更新并不顺利…………。 先说一下为什么用禅道这个工具: 再使用禅道这个工具前,使用过的工具有QC(Quality Center)、jira࿰…...

专业课改革,难度陡然提高,专业课122总分390+南京理工大学818南理工818上岸经验分享
今年专业课相对较难,分数122,基本达到预期。南理工818是信号和数电两门课,各站一半。复试时间数电可能要更多一点,也比信号难拿分。今年专业课难度很大,基本超过不少985学校,大家要重视。 有条件的同学建议…...

Java入门与实践
Java基础 Java入门 idea的使用 idea快捷键 crtlaltt 对选中的代码弹出环绕选项弹出层 问题描述:idea光标变小黑块 解决:误触Insert键,再次按Insert键即可 java基础语法 注释 //单行注释/* 多行注释 *//** 文档注释,可提取到…...

TensorRT量化实战课YOLOv7量化:pytorch_quantization介绍
目录 前言1. 课程介绍2. pytorch_quantization2.1 initialize函数2.2 tensor_quant模块2.3 TensorQuantizer类2.4 QuantDescriptor类2.5 calib模块 总结 前言 手写 AI 推出的全新 TensorRT 模型量化实战课程,链接。记录下个人学习笔记,仅供自己参考。 该…...

【23真题】知识点覆盖全!有罕见判断题!
今天分享的是23年烟台大学833的信号与系统试题及解析。 本套试卷难度分析:本套试题内容难度中等偏下,题目难度不大,但是题量较多,考察的知识点全面,比较多的考察了对信号波形以及频谱图的画法,值得注意的是…...
K8s外部网络访问之Ingress
K8s外部网络访问之Ingress 1 简介2 安装ingress-nginx-controller2.1 下载ingress部署文件2.2 修改deploy.yaml文件参数2.2.1 修改镜像源2.2.2 修改部分参数2.2.3 部署ingress-nginx2.2.4 查看部署结果3.ingress-nginx应用3.1 制作镜像3.2 配置TLS secret3.2.1 创建HTTPS证书3.…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...