Transformer英语-法语机器翻译实例
依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。
data_path = "weibo_senti_100k.csv"
data_list = open(data_path,"r",encoding='UTF-8').readlines()[1:]
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
decoder = TransformerDecoder(len(tgt_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)loss 0.030, 5244.8 tokens/sec on cuda:0

图11.2 在英语-法语机器翻译数据集上训练Transformer模型
训练结束后,使用Transformer模型将一些英语句子翻译成法语,并且计算它们的BLEU分数。
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
结果如下:
go . => va !, bleu 1.000
i lost . => j'ai perdu ., bleu 1.000
he's calm . => il est calme ., bleu 1.000
i'm home . => je suis chez moi ., bleu 1.000
当进行最后一个英语到法语的句子翻译工作时,需要可视化Transformer的注意力权重。编码器自注意力权重的形状为[编码器层数,注意力头数,num_steps或查询的数目,num_steps或“键-值”对的数目]。
enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape((num_layers, num_heads,-1, num_steps))
enc_attention_weights.shape
结果如下:
torch.Size([2, 4, 10, 10])
在编码器的自注意力中,查询和键都来自相同的输入序列。由于填充词元是不携带信息的,因此通过指定输入序列的有效长度,可以避免查询与使用填充词元的位置计算注意力。接下来,将逐行呈现两层多头注意力的权重。每个注意力头都根据查询、键和值不同的表示子空间来表示不同的注意力,如图11.3所示。
d2l.show_heatmaps(enc_attention_weights.cpu(), xlabel='Key positions',ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],figsize=(7, 3.5))

图11.3 4头注意力模型
为了可视化解码器的自注意力权重和编码器-解码器的注意力权重,我们需要完成更多的数据操作工作。
例如,用零填充被遮蔽住的注意力权重。值得注意的是,解码器的自注意力权重和编码器-解码器的注意力权重都有相同的查询,即以序列开始词元(Beginning-Of-Sequence,BOS)打头,再与后续输出的词元共同组成序列。
dec_attention_weights_2d = [head[0].tolist()
for step in dec_attention_weight_seq
for attn in step for blk in attn for head in blk]
dec_attention_weights_filled = torch.tensor(pd.DataFrame(dec_attention_weights_2d).fillna(0.0).values)
dec_attention_weights = dec_attention_weights_filled.reshape((-1, 2, num_layers, num_heads, num_steps))
dec_self_attention_weights, dec_inter_attention_weights = \dec_attention_weights.permute(1, 2, 3, 0, 4)
dec_self_attention_weights.shape, dec_inter_attention_weights.shape
结果如下:
(torch.Size([2, 4, 6, 10]), torch.Size([2, 4, 6, 10]))
由于解码器自注意力的自回归属性,查询不会对当前位置之后的键-值对进行注意力计算。结果如图11.4所示。
# Plusonetoincludethebeginning-of-sequencetoken
d2l.show_heatmaps(dec_self_attention_weights[:, :, :, :len(translation.split()) + 1],xlabel='Key positions', ylabel='Query positions',titles=['Head %d' % i for i in range(1, 5)], figsize=(7, 3.5))

图11.4 查询不会对当前位置之后的键-值对进行注意力计算
与编码器的自注意力的情况类似,通过指定输入序列的有效长度,输出序列的查询不会与输入序列中填充位置的词元进行注意力计算。结果如图11.5所示。
d2l.show_heatmaps(dec_inter_attention_weights, xlabel='Key positions',ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],figsize=(7, 3.5))

图11.5 指定输入序列的有效长度的4头注意模型
尽管Transformer结构是为了序列到序列的学习而提出的,Transformer编码器或Transformer解码器通常被单独用于不同的深度学习任务中。
节选自《Python深度学习原理、算法与案例》。

相关文章:
Transformer英语-法语机器翻译实例
依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。 da…...
21.12 Python 实现网站服务器
Web服务器本质上是一个提供Web服务的应用程序,运行在服务器上,用于处理HTTP请求和响应。它接收来自客户端(通常是浏览器)的HTTP请求,根据请求的URL、参数等信息生成HTTP响应,并将响应返回给客户端ÿ…...
Leetcode.274 H 指数
题目链接 Leetcode.274 H 指数 mid 题目描述 给你一个整数数组 c i t a t i o n s citations citations ,其中 c i t a t i o n s [ i ] citations[i] citations[i] 表示研究者的第 i i i 篇论文被引用的次数。计算并返回该研究者的 h h h 指数。 根据维基百科…...
订单BOM放哪儿?(我的APS项目二)
供应商的小伙伴带来了一个全新的架构,在服务器提供的服务中,有一个对象模型服务,就是数据内存对象;这个方式确实是我在其它架构中没有见到过的。可惜,最初的版本,我们的订单BOM被设计到放在内存对象中。我对…...
从0到1之微信小程序快速入门(03)
目录 什么是生命周期函数 WXS脚本 编辑 与 JavaScript 不同 纯数据字段 组件生命周期 定义生命周期方法 代码示例 组件所在页面的生命周期 代码示例 插槽 什么是插槽 启用多插槽 编辑 定义多插槽 组件通信 组件间通信 监听事件 触发事件 获取组件实例 自…...
【面试高高手】—— docker面试题
文章目录 1. 什么是Docker?它有什么作用?2.Docker容器和虚拟机之间有什么区别?3.如何创建一个Docker容器?4.Docker镜像和容器的区别是什么?5.什么是Dockerfile?能够详细说明下吗?6.什么是Docker Compose&a…...
mac电脑怎么永久性彻底删除文件?
Mac老用户都知道在我们查看Mac内存时都会发现有一条“其他文件”占比非常高,它是Mac储存空间中的“其他”数据包含不可移除的移动资源,如,Siri 语音、字体、词典、钥匙串和 CloudKit 数据库、系统无法删除缓存的文件等。这些“其他文件”无用…...
MySQL(2):环境搭建
1.软件下载 软装去官网下载(社区版):https://downloads.mysql.com/archives/installer/(历史版本可选) 选择下面的,一步到位 2.软件安装 双击 .msi 文件 选完 Custom 自定义后点 next 按 1,…...
Android平台GB28181执法记录仪技术方案
技术背景 我们在做Android平台GB28181设备接入模块的时候,对接过好多开发者,他们都是用于执法记录仪场景,执法记录仪是一种便携式设备,用于记录执法人员的行动和接触情况,通过实时回传音视频数据和实时位置信息给指挥…...
【已解决】VSCode运行C#控制台乱码显示
问题描述 如上图所示,最近在学习C#突然发现我在运行Hello World的时候出现这样的乱码情况。 分析原因 主要是因为VS Code 是UTF-8的编码格式,而我们的PC是Unicode编码,所以我们需要对其进行一个统一即可解决问题。那么知道这个的问题那就开…...
MySQL扩展语句和约束条件
MySQL扩展语句 create TABLE if not exists ky32 (id int(4) zerofill primary key auto_inc rement, #表示该字段可以自增长,默认从1开始每条记录会自动递增1name varchar(10) not null,cradid int(10) not null unique key,hobby varchar (50))&#x…...
Java排序学习
int[] 数组排序 升序排序: Arrays.sort(num);降序排序: num IntStream.of(num) // 变为 IntStream.boxed() // 变为 Stream<Integer>.sorted(Comparator.reverseOrder()) // 按自然序相反排序.mapToInt(Integer::intValue) …...
《2023中国社交媒体平台指南》丨附下载_三叠云
✦ ✦✦ ✦✦ ✦✦ ✦ KAWO发布的《2023中国社交媒体平台指南》,对中国社交媒发展情况、八大社交媒体平台做出详细分析,为营销人员提供了布局社交媒体的实操性指南。 社交媒体八大趋势: 1.社交媒体搜索引擎化 除了社交媒体上发表的内容会被…...
【unity小技巧】unity排序问题的探究
文章目录 前言一、排序图层二、sorting Group的使用三、树木排序设计方法一 代码控制方法二 拆分图片方法三 透视排序1. 普通物品排序2. TileMap瓦片排序设计 完结 前言 unity的排序问题其实之前分享的项目多多少少都有提到一点,但是没有单独拿出来说,所…...
为什么会被【禅道】工具的公司提出QQ群的反思…………
周末备份Gitlab的代码库,把Gitlab更新到了最新的16.5。顺带看了禅道官网出了最新版本18.8。但是禅道的升级更新并不顺利…………。 先说一下为什么用禅道这个工具: 再使用禅道这个工具前,使用过的工具有QC(Quality Center)、jira࿰…...
专业课改革,难度陡然提高,专业课122总分390+南京理工大学818南理工818上岸经验分享
今年专业课相对较难,分数122,基本达到预期。南理工818是信号和数电两门课,各站一半。复试时间数电可能要更多一点,也比信号难拿分。今年专业课难度很大,基本超过不少985学校,大家要重视。 有条件的同学建议…...
Java入门与实践
Java基础 Java入门 idea的使用 idea快捷键 crtlaltt 对选中的代码弹出环绕选项弹出层 问题描述:idea光标变小黑块 解决:误触Insert键,再次按Insert键即可 java基础语法 注释 //单行注释/* 多行注释 *//** 文档注释,可提取到…...
TensorRT量化实战课YOLOv7量化:pytorch_quantization介绍
目录 前言1. 课程介绍2. pytorch_quantization2.1 initialize函数2.2 tensor_quant模块2.3 TensorQuantizer类2.4 QuantDescriptor类2.5 calib模块 总结 前言 手写 AI 推出的全新 TensorRT 模型量化实战课程,链接。记录下个人学习笔记,仅供自己参考。 该…...
【23真题】知识点覆盖全!有罕见判断题!
今天分享的是23年烟台大学833的信号与系统试题及解析。 本套试卷难度分析:本套试题内容难度中等偏下,题目难度不大,但是题量较多,考察的知识点全面,比较多的考察了对信号波形以及频谱图的画法,值得注意的是…...
K8s外部网络访问之Ingress
K8s外部网络访问之Ingress 1 简介2 安装ingress-nginx-controller2.1 下载ingress部署文件2.2 修改deploy.yaml文件参数2.2.1 修改镜像源2.2.2 修改部分参数2.2.3 部署ingress-nginx2.2.4 查看部署结果3.ingress-nginx应用3.1 制作镜像3.2 配置TLS secret3.2.1 创建HTTPS证书3.…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
