当前位置: 首页 > news >正文

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)

参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQ&list=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu

视频4:CNN 中 stride 的概念

在这里插入图片描述
如上图,stride 其实就是 ”步伐“ 的概念。

默认情况下,滑动窗口一次移动一步。而当 stride = 2 时,则一次移动两步,垂直移动和水平移动都是。

当我们提高 stride 的值的时候,卷积操作产生的特征图的 size 会成倍减少,如下图:
(stride = 2)

在这里插入图片描述

具体请看 1:47

当使用 padding 的时候,卷积产生的 特征图的 大小通过下面公式计算

在这里插入图片描述

视频5:max pooling in CNN

max pooling 在做的事情如下图
在这里插入图片描述
如上图,滑动窗口提取出窗口中的最大值,放进新图里

一般而言,stride 的值和滑动窗口的边长是相等的

在这里插入图片描述

如上图,这有两个好处:
1.减少图像大小,减少 computational cost
2.锐化图的特征,加强图的特征 (因为它保留了最大值)

关于锐化特征,更明显的例子如下图
在这里插入图片描述

使用 max pooling layer 时,输入有多少张图,输出就有多少张图,如下图

在这里插入图片描述

实际上,我们并不总是使用 max pooling layer。因为 max pooling layer 会减少图的 size。

使用 Max pooling layer 的地方通常只在 卷积层 后面

需要注意的是,max pooling layer 里并不涉及参数,所以它这块地方并不需要训练

除了 max pooling layer 外,还有 average pooling 等等,看需求

下图是一个总结
在这里插入图片描述
视频6:CNN 里的 fully connected layer 全连接层

全连接层其实就是 simple neural network,被用来做分类

下图是个更好的解释

在这里插入图片描述
如上图,卷积层提取原图的特征,(随后有可能经过 max pooling layer 来减少图的大小,以及锐化特征)。接着产出的图被展开,作为后面的全连接层的输入。随后就是一个用于分类的神经网络。

需要注意的是,全连接层的输出层的神经元数量,和我们要分的类别的数量是相等的。

此外,全连接层中的 ”边“ (权重矩阵) 是需要被训练的。

如下图,是总结
在这里插入图片描述

相关文章:

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)

参考视频:https://www.youtube.com/watch?vE5Z7FQp7AQQ&listPLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频4:CNN 中 stride 的概念 如上图,stride 其实就是 ”步伐“ 的概念。 默认情况下,滑动窗口一次移动一步。而当 stride …...

样式迁移 - Style Transfer

所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。 将样式图片中的样式迁移到内容图片上,得到合成图片。 基于CNN的样式迁移 奠基性工作: 首先…...

UE5.3启动C++项目报错崩溃

最近尝试用C来练习,碰到一个启动崩溃的事情 按照官方给的步骤做的:官方链接 结果是自定义的Character的问题,在自定义Character的构造函数里调用了: check(GEngine ! nullptr); GEngine->AddOnScreenDebugMessage(-1, 5, FCol…...

C/S架构和B/S架构

1. C/S架构和B/S架构简介 C/S 架构(Client/Server Architecture)和 B/S 架构(Browser/Server Architecture)是两种不同的软件架构模式,它们描述了客户端和服务器之间的关系以及数据交互的方式。 C/S 架构&#xff08…...

【AD9361 数字接口CMOS LVDSSPI】C 并行数据 LVDS

接上一部分,AD9361 数字接口CMOS &LVDS&SPI 目录 一、LVDS模式数据路径和时钟信号LVDS模式数据通路信号[1] DATA_CLK[2] FB_CLK[3] Rx_FRAME[4] Rx_D[5:0][5] Tx_FRAME[6]Tx_D[5:0][7] ENABLE[8] TXNRX系列 二、LVDS最大时钟速率和信…...

开关电源测试方案分享:电源纹波及噪声测试方法、测试标准

纹波及噪声影响着设备的性能和稳定性,是开关电源测试的重要环节。通过电源纹波噪声测试,检测电源纹波情况,从而提升开关电源的性能。纳米软件开关电源自动化测试软件助力纹波和噪声测试,提升测试效能。 开关电源纹波及噪声测试方法…...

git的使用——如何创建.gitignore文件,排除target、.idea文件夹的提交

前言 git作为开发人员必备的技能,需要熟练掌握,本篇博客记录一些git使用的场景,结合具体问题进行git使用的记录。以gitee的使用为例。 本篇博客介绍如何创建.gitignore文件,排除一些文件夹的提交,比如排除target、.i…...

react-antd组件 input输入框: 实现按回车搜索

目录 法1: 法2: 法1: 在Input组件上绑定onKeyUp方法 import { Input, message } from antd;class App extends React.Component{handeleSousuo () > {this.props.form.validateFields((error, values) > {if(!error){axios.post().t…...

python_PyQt5日周月K线纵向对齐显示_1_数据处理

目录 写在前面: 图形结果显示: 数据设计: 代码: 从日数据中计算周数据、月数据 生成图形显示需要的数据格式 写在前面: “PyQt5日周月K线纵向对齐显示”,将分三篇博文描述 1 数据处理。将数据处理成…...

leetcode经典面试150题---4.删除有序数组中的重复项II

目录 题目描述 前置知识 代码 方法一 双指针 思路 图解 实现 复杂度 题目描述 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间&…...

Transformer英语-法语机器翻译实例

依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。 da…...

21.12 Python 实现网站服务器

Web服务器本质上是一个提供Web服务的应用程序,运行在服务器上,用于处理HTTP请求和响应。它接收来自客户端(通常是浏览器)的HTTP请求,根据请求的URL、参数等信息生成HTTP响应,并将响应返回给客户端&#xff…...

Leetcode.274 H 指数

题目链接 Leetcode.274 H 指数 mid 题目描述 给你一个整数数组 c i t a t i o n s citations citations ,其中 c i t a t i o n s [ i ] citations[i] citations[i] 表示研究者的第 i i i 篇论文被引用的次数。计算并返回该研究者的 h h h 指数。 根据维基百科…...

订单BOM放哪儿?(我的APS项目二)

供应商的小伙伴带来了一个全新的架构,在服务器提供的服务中,有一个对象模型服务,就是数据内存对象;这个方式确实是我在其它架构中没有见到过的。可惜,最初的版本,我们的订单BOM被设计到放在内存对象中。我对…...

从0到1之微信小程序快速入门(03)

目录 什么是生命周期函数 WXS脚本 ​编辑 与 JavaScript 不同 纯数据字段 组件生命周期 定义生命周期方法 代码示例 组件所在页面的生命周期 代码示例 插槽 什么是插槽 启用多插槽 ​编辑 定义多插槽 组件通信 组件间通信 监听事件 触发事件 获取组件实例 自…...

【面试高高手】—— docker面试题

文章目录 1. 什么是Docker?它有什么作用?2.Docker容器和虚拟机之间有什么区别?3.如何创建一个Docker容器?4.Docker镜像和容器的区别是什么?5.什么是Dockerfile?能够详细说明下吗?6.什么是Docker Compose&a…...

mac电脑怎么永久性彻底删除文件?

Mac老用户都知道在我们查看Mac内存时都会发现有一条“其他文件”占比非常高,它是Mac储存空间中的“其他”数据包含不可移除的移动资源,如,Siri 语音、字体、词典、钥匙串和 CloudKit 数据库、系统无法删除缓存的文件等。这些“其他文件”无用…...

MySQL(2):环境搭建

1.软件下载 软装去官网下载(社区版):https://downloads.mysql.com/archives/installer/(历史版本可选) 选择下面的,一步到位 2.软件安装 双击 .msi 文件 选完 Custom 自定义后点 next 按 1&#xff0c…...

Android平台GB28181执法记录仪技术方案

技术背景 我们在做Android平台GB28181设备接入模块的时候,对接过好多开发者,他们都是用于执法记录仪场景,执法记录仪是一种便携式设备,用于记录执法人员的行动和接触情况,通过实时回传音视频数据和实时位置信息给指挥…...

【已解决】VSCode运行C#控制台乱码显示

问题描述 如上图所示,最近在学习C#突然发现我在运行Hello World的时候出现这样的乱码情况。 分析原因 主要是因为VS Code 是UTF-8的编码格式,而我们的PC是Unicode编码,所以我们需要对其进行一个统一即可解决问题。那么知道这个的问题那就开…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...