当前位置: 首页 > news >正文

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)

参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQ&list=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu

视频4:CNN 中 stride 的概念

在这里插入图片描述
如上图,stride 其实就是 ”步伐“ 的概念。

默认情况下,滑动窗口一次移动一步。而当 stride = 2 时,则一次移动两步,垂直移动和水平移动都是。

当我们提高 stride 的值的时候,卷积操作产生的特征图的 size 会成倍减少,如下图:
(stride = 2)

在这里插入图片描述

具体请看 1:47

当使用 padding 的时候,卷积产生的 特征图的 大小通过下面公式计算

在这里插入图片描述

视频5:max pooling in CNN

max pooling 在做的事情如下图
在这里插入图片描述
如上图,滑动窗口提取出窗口中的最大值,放进新图里

一般而言,stride 的值和滑动窗口的边长是相等的

在这里插入图片描述

如上图,这有两个好处:
1.减少图像大小,减少 computational cost
2.锐化图的特征,加强图的特征 (因为它保留了最大值)

关于锐化特征,更明显的例子如下图
在这里插入图片描述

使用 max pooling layer 时,输入有多少张图,输出就有多少张图,如下图

在这里插入图片描述

实际上,我们并不总是使用 max pooling layer。因为 max pooling layer 会减少图的 size。

使用 Max pooling layer 的地方通常只在 卷积层 后面

需要注意的是,max pooling layer 里并不涉及参数,所以它这块地方并不需要训练

除了 max pooling layer 外,还有 average pooling 等等,看需求

下图是一个总结
在这里插入图片描述
视频6:CNN 里的 fully connected layer 全连接层

全连接层其实就是 simple neural network,被用来做分类

下图是个更好的解释

在这里插入图片描述
如上图,卷积层提取原图的特征,(随后有可能经过 max pooling layer 来减少图的大小,以及锐化特征)。接着产出的图被展开,作为后面的全连接层的输入。随后就是一个用于分类的神经网络。

需要注意的是,全连接层的输出层的神经元数量,和我们要分的类别的数量是相等的。

此外,全连接层中的 ”边“ (权重矩阵) 是需要被训练的。

如下图,是总结
在这里插入图片描述

相关文章:

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)

参考视频:https://www.youtube.com/watch?vE5Z7FQp7AQQ&listPLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频4:CNN 中 stride 的概念 如上图,stride 其实就是 ”步伐“ 的概念。 默认情况下,滑动窗口一次移动一步。而当 stride …...

样式迁移 - Style Transfer

所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。 将样式图片中的样式迁移到内容图片上,得到合成图片。 基于CNN的样式迁移 奠基性工作: 首先…...

UE5.3启动C++项目报错崩溃

最近尝试用C来练习,碰到一个启动崩溃的事情 按照官方给的步骤做的:官方链接 结果是自定义的Character的问题,在自定义Character的构造函数里调用了: check(GEngine ! nullptr); GEngine->AddOnScreenDebugMessage(-1, 5, FCol…...

C/S架构和B/S架构

1. C/S架构和B/S架构简介 C/S 架构(Client/Server Architecture)和 B/S 架构(Browser/Server Architecture)是两种不同的软件架构模式,它们描述了客户端和服务器之间的关系以及数据交互的方式。 C/S 架构&#xff08…...

【AD9361 数字接口CMOS LVDSSPI】C 并行数据 LVDS

接上一部分,AD9361 数字接口CMOS &LVDS&SPI 目录 一、LVDS模式数据路径和时钟信号LVDS模式数据通路信号[1] DATA_CLK[2] FB_CLK[3] Rx_FRAME[4] Rx_D[5:0][5] Tx_FRAME[6]Tx_D[5:0][7] ENABLE[8] TXNRX系列 二、LVDS最大时钟速率和信…...

开关电源测试方案分享:电源纹波及噪声测试方法、测试标准

纹波及噪声影响着设备的性能和稳定性,是开关电源测试的重要环节。通过电源纹波噪声测试,检测电源纹波情况,从而提升开关电源的性能。纳米软件开关电源自动化测试软件助力纹波和噪声测试,提升测试效能。 开关电源纹波及噪声测试方法…...

git的使用——如何创建.gitignore文件,排除target、.idea文件夹的提交

前言 git作为开发人员必备的技能,需要熟练掌握,本篇博客记录一些git使用的场景,结合具体问题进行git使用的记录。以gitee的使用为例。 本篇博客介绍如何创建.gitignore文件,排除一些文件夹的提交,比如排除target、.i…...

react-antd组件 input输入框: 实现按回车搜索

目录 法1: 法2: 法1: 在Input组件上绑定onKeyUp方法 import { Input, message } from antd;class App extends React.Component{handeleSousuo () > {this.props.form.validateFields((error, values) > {if(!error){axios.post().t…...

python_PyQt5日周月K线纵向对齐显示_1_数据处理

目录 写在前面: 图形结果显示: 数据设计: 代码: 从日数据中计算周数据、月数据 生成图形显示需要的数据格式 写在前面: “PyQt5日周月K线纵向对齐显示”,将分三篇博文描述 1 数据处理。将数据处理成…...

leetcode经典面试150题---4.删除有序数组中的重复项II

目录 题目描述 前置知识 代码 方法一 双指针 思路 图解 实现 复杂度 题目描述 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间&…...

Transformer英语-法语机器翻译实例

依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。 da…...

21.12 Python 实现网站服务器

Web服务器本质上是一个提供Web服务的应用程序,运行在服务器上,用于处理HTTP请求和响应。它接收来自客户端(通常是浏览器)的HTTP请求,根据请求的URL、参数等信息生成HTTP响应,并将响应返回给客户端&#xff…...

Leetcode.274 H 指数

题目链接 Leetcode.274 H 指数 mid 题目描述 给你一个整数数组 c i t a t i o n s citations citations ,其中 c i t a t i o n s [ i ] citations[i] citations[i] 表示研究者的第 i i i 篇论文被引用的次数。计算并返回该研究者的 h h h 指数。 根据维基百科…...

订单BOM放哪儿?(我的APS项目二)

供应商的小伙伴带来了一个全新的架构,在服务器提供的服务中,有一个对象模型服务,就是数据内存对象;这个方式确实是我在其它架构中没有见到过的。可惜,最初的版本,我们的订单BOM被设计到放在内存对象中。我对…...

从0到1之微信小程序快速入门(03)

目录 什么是生命周期函数 WXS脚本 ​编辑 与 JavaScript 不同 纯数据字段 组件生命周期 定义生命周期方法 代码示例 组件所在页面的生命周期 代码示例 插槽 什么是插槽 启用多插槽 ​编辑 定义多插槽 组件通信 组件间通信 监听事件 触发事件 获取组件实例 自…...

【面试高高手】—— docker面试题

文章目录 1. 什么是Docker?它有什么作用?2.Docker容器和虚拟机之间有什么区别?3.如何创建一个Docker容器?4.Docker镜像和容器的区别是什么?5.什么是Dockerfile?能够详细说明下吗?6.什么是Docker Compose&a…...

mac电脑怎么永久性彻底删除文件?

Mac老用户都知道在我们查看Mac内存时都会发现有一条“其他文件”占比非常高,它是Mac储存空间中的“其他”数据包含不可移除的移动资源,如,Siri 语音、字体、词典、钥匙串和 CloudKit 数据库、系统无法删除缓存的文件等。这些“其他文件”无用…...

MySQL(2):环境搭建

1.软件下载 软装去官网下载(社区版):https://downloads.mysql.com/archives/installer/(历史版本可选) 选择下面的,一步到位 2.软件安装 双击 .msi 文件 选完 Custom 自定义后点 next 按 1&#xff0c…...

Android平台GB28181执法记录仪技术方案

技术背景 我们在做Android平台GB28181设备接入模块的时候,对接过好多开发者,他们都是用于执法记录仪场景,执法记录仪是一种便携式设备,用于记录执法人员的行动和接触情况,通过实时回传音视频数据和实时位置信息给指挥…...

【已解决】VSCode运行C#控制台乱码显示

问题描述 如上图所示,最近在学习C#突然发现我在运行Hello World的时候出现这样的乱码情况。 分析原因 主要是因为VS Code 是UTF-8的编码格式,而我们的PC是Unicode编码,所以我们需要对其进行一个统一即可解决问题。那么知道这个的问题那就开…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...