深度学习_2 数据操作
数据操作
机器学习包括的核心组件有:
- 可以用来学习的数据(data);
- 如何转换数据的模型(model);
- 一个目标函数(objective function),用来量化模型的有效性;
- 调整模型参数以优化目标函数的算法(algorithm)。
我们要从数据中提取出特征,机器学习、深度学习通过特征来进一步计算得到模型。因此下面主要介绍的是对数据要做哪些操作。
基本操作
深度学习里最多操作的数据结构是N维的数组。
0维:一个数,一个标量,比如1.
1维:比如一个一维数组,他的数据是一个一维的向量(特征向量)。
2维:比如二维数组(特征矩阵)。
当然还有更多维度,比如视频的长,宽,时间,批量大小,通道……
如果我们想创建这样一个数组,需要明确的因素:
- 数组结构,比如3*4.
- 数组数据类型,浮点?整形?
- 具体每个元素的值。
访问元素的方式:

1:3 是左闭右开,表示不包含第3行。
双冒号是跳着访问,后跟步长。比如 ::3 表示从第0行开始访问,每3行访问一次。
明白了这些,那接下来我们就创建一个数组。在机器学习中这种数据的容器一般被称作张量.
创建张量
这部分代码在 jupyter/pytorch/chapter_preliminaries/ndarray.ipynb 里。
在其中可以运行尝试代码部分,创建一维张量:
import torch
X = torch.arange(12) # 自动创建 0-11 的一维张量。输入 X 查看 X 内元素数据,输出:
# tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
X.shape # 查看向量形状。输出 torch.Size([12]),指长12的一维向量
X.numel() # 只获取长度,输出12
X = X.reshape(3, 4) # 重新改成了3行4列形状。变成了0123 4567 891011
torch.zeros((2, 3, 4)) # 创建了一个形状为(2,3,4)的全0张量
# tensor([[[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]],
#
# [[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]]])
# torch.ones 同理,是全1的
# torch.randn 是取随机数,随机数是均值=0,方差=1的一个高斯分布中取
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) # 给定值创建
torch.exp(X) # 求e^x中每个元素值得到的新张量
reshape 很有意思,它不是复制原数组后重新开辟了一片空间,而是还是对原数组元素的操作(只不过原来是连续12个数,现在我们把他们视作4个一行的3行元素。存储空间都是连续的)。因此如果我们对 reshape 后的数组赋值,原数组值也会改变。
算术运算
对于两个相同形状的向量可以进行+ - * / **(求幂运算)运算。
x = torch.tensor([1.0, 2, 4, 8]) # 1.0 为了让这个数组变成浮点数组
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # **运算符是求幂运算
# Output:
(tensor([ 3., 4., 6., 10.]),tensor([-1., 0., 2., 6.]),tensor([ 2., 4., 8., 16.]),tensor([0.5000, 1.0000, 2.0000, 4.0000]),tensor([ 1., 4., 16., 64.]))
x==y # 每一项分别判断是否相等。我试了一下,数据类型不影响。2.0==2
x.sum() # 所有元素求和
张量连接
X = torch.arange(12, dtype=torch.float32).reshape((3,4)) # 创建 float32 位的张量
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1) # 行和列两个维度的拼接
# Output:
(tensor([[ 0., 1., 2., 3.],[ 4., 5., 6., 7.],[ 8., 9., 10., 11.],[ 2., 1., 4., 3.],[ 1., 2., 3., 4.],[ 4., 3., 2., 1.]]),tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],[ 4., 5., 6., 7., 1., 2., 3., 4.],[ 8., 9., 10., 11., 4., 3., 2., 1.]]))
# 这里我看到弹幕前辈的讲解,感觉很受用。行是样例,列是特征属性,这个类似 MySQL 的关系数据库理解
广播机制
即使两个张量形状不同,也有可能通过广播机制进行按元素操作。
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
# Output:
(tensor([[0],[1],[2]]),tensor([[0, 1]]))a + b # 把a按列复制2份,b按行复制3份,都变成3*2的张量进行操作
# Output:
tensor([[0, 1],[1, 2],[2, 3]])
索引
X[-1], X[1:3] # 这里和前面介绍的概念一样。-1 是倒数第一个元素(一个n-1维度张量),1:3 是第2,第3个元素不包括第4个元素。
# Output:
(tensor([ 8., 9., 10., 11.]),tensor([[ 4., 5., 6., 7.],[ 8., 9., 10., 11.]]))
X[1,2]=9 # 写入
X[0:2, :] = 12 # 批量写入,给0-1行,所有列写成12
X
# Output:
tensor([[12., 12., 12., 12.],[12., 12., 12., 12.],[ 8., 9., 10., 11.]])
节省内存
有一些操作会分配新内存。比如 Y=Y+X,并不是直接在 Y 的原地址上加了X,而是在新地址上计算得到 Y+X,让 Y 指向新地址。
可以通过 id(X) 函数来查看地址。
Y[:]=Y+X 或者 Y+=X 会在原地执行计算,Y 地址不变。
类型转换
转换为 numpy 张量:A=X.numpy()
张量转换为标量:
a=torch.tensor([3.5])
a.item() # 3.5
float(a) # 3.5
int(a) # 3
数据预处理
实际处理数据的时候我们并不是从张量数据类型开始的,我们可能得到一个 excel 文件,自己把它转换成 python 张量。以及在转换之前,我们可能对数据进行预处理,比如把其中的空值统一赋值为0之类的操作。以下是转换步骤。
首先我们创建一个 csv 文件作为原始数据集。
import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA,Pave,127500\n') # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')
三个属性分别是 room 数量,走廊状态(比如铺了地板),价格。
然后我们把这个数据读入 python,加载原始数据集。
# 如果没有安装pandas,只需取消对以下行的注释来安装pandas
# !pip install pandas
import pandas as pddata = pd.read_csv(data_file)
这个数据集里还是有很多 NaN 项的,我们要对其进行修改替换。数值类典型处理方式是插值和删除。
首先最后一列数据是完整不需要修改的,那么我们只要处理前两列,我们把前两列数据单独拿出来做完处理最后进行张量拼接。
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
然后我们把 NumEooms 中的 NaN 值用均值替代,
inputs = inputs.fillna(inputs.mean(numeric_only=True))
print(inputs)
# Output:NumRooms Alley
0 3.0 Pave
1 2.0 NaN
2 4.0 NaN
3 3.0 NaN
对于 Alley 列,只有两种状态:NaN 和 Pave。我们用 pandas 的方法,把 NaN 也视作一个类,自动拆成两列设置值。
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
# Output:NumRooms Alley_Pave Alley_nan
0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1
最后,我们将前两列处理后得到的结果与最后一列转换为张量后进行拼接。
import torchX = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
y=y.reshape(4,1)
torch.cat((X,y),dim=1)
# Output:
tensor([[3.0000e+00, 1.0000e+00, 0.0000e+00, 1.2750e+05],[2.0000e+00, 0.0000e+00, 1.0000e+00, 1.0600e+05],[4.0000e+00, 0.0000e+00, 1.0000e+00, 1.7810e+05],[3.0000e+00, 0.0000e+00, 1.0000e+00, 1.4000e+05]], dtype=torch.float64)
相关文章:
深度学习_2 数据操作
数据操作 机器学习包括的核心组件有: 可以用来学习的数据(data);如何转换数据的模型(model);一个目标函数(objective function),用来量化模型的有效性&…...
win 下安装 nvm 的使用与配置
nvm 全名 node.js version management,是一个 nodejs 的版本管理工具。通过它可以安装和切换不同版本的 nodejs。 注:如果已经安装了 nodejs 需先卸载后再安装 nvm 为了确保 nodejs 已彻底删除,可以看看安装目录中是否有 node 文件夹&#x…...
Git笔记
删除最后一次提交 git reset --hard HEAD~1...
省钱兄共享茶室共享娱乐室小程序都有哪些功能
随着共享经济的兴起,共享茶室和共享娱乐室作为一种新型的共享空间,逐渐受到了年轻人的青睐。省钱兄共享茶室共享娱乐室小程序作为该领域的优秀代表,集多种功能于一身,为用户提供了一个便捷、舒适、高效的社交娱乐平台。本文将详细…...
vue-cli方式创建vue3工程
创建工程前,可先用命令行查看是否安装vue-cli。 通过命令行查看vue-cli版本 vue --version 如果已安装vue-cli,则会显示当前安装版本 vue/cli 4.5.13 如果没有安装vue-cli,会提示安装 vue : 无法识别“vue”命令 需要通过npm全局安装v…...
四、W5100S/W5500+RP2040树莓派Pico<TCP Server数据回环测试>
文章目录 1. 前言2. 协议简介2.1 简述2.2 优点2.3 应用 3. WIZnet以太网芯片4. TCP Server数据回环测试4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 测试现象 5. 注意事项6. 相关链接 1. 前言 在计算机网络中,TCP Server是不可或缺的角色,它…...
技术视角下的跑腿小程序开发:关键挑战和解决方案
跑腿小程序作为连接服务提供者和用户的桥梁,面临着诸多技术挑战。本文将聚焦于技术层面的关键挑战,并提供解决方案,以帮助开发者应对技术上的复杂问题。 1. 实时性与性能挑战 挑战: 跑腿小程序需要实时地匹配订单、更新状态和提…...
Mysql进阶-索引篇(下)
SQL性能分析 SQL执行频率 MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次,通过sql语句的访问频次,我们可…...
从龙湖智创生活入选金钥匙联盟,透视物业服务力竞争风向
假设你是业主,物业“服务”和“管理”,哪个名词看起来更加亲切、讨喜? 站在个人角度,“服务”更让人感受到温度。但对于一个要长期运营下去的住宅或者商企项目来说,整体的管理又必不可少。前者面向人,后者…...
什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)
参考视频:https://www.youtube.com/watch?vE5Z7FQp7AQQ&listPLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频4:CNN 中 stride 的概念 如上图,stride 其实就是 ”步伐“ 的概念。 默认情况下,滑动窗口一次移动一步。而当 stride …...
样式迁移 - Style Transfer
所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。 将样式图片中的样式迁移到内容图片上,得到合成图片。 基于CNN的样式迁移 奠基性工作: 首先…...
UE5.3启动C++项目报错崩溃
最近尝试用C来练习,碰到一个启动崩溃的事情 按照官方给的步骤做的:官方链接 结果是自定义的Character的问题,在自定义Character的构造函数里调用了: check(GEngine ! nullptr); GEngine->AddOnScreenDebugMessage(-1, 5, FCol…...
C/S架构和B/S架构
1. C/S架构和B/S架构简介 C/S 架构(Client/Server Architecture)和 B/S 架构(Browser/Server Architecture)是两种不同的软件架构模式,它们描述了客户端和服务器之间的关系以及数据交互的方式。 C/S 架构(…...
【AD9361 数字接口CMOS LVDSSPI】C 并行数据 LVDS
接上一部分,AD9361 数字接口CMOS &LVDS&SPI 目录 一、LVDS模式数据路径和时钟信号LVDS模式数据通路信号[1] DATA_CLK[2] FB_CLK[3] Rx_FRAME[4] Rx_D[5:0][5] Tx_FRAME[6]Tx_D[5:0][7] ENABLE[8] TXNRX系列 二、LVDS最大时钟速率和信…...
开关电源测试方案分享:电源纹波及噪声测试方法、测试标准
纹波及噪声影响着设备的性能和稳定性,是开关电源测试的重要环节。通过电源纹波噪声测试,检测电源纹波情况,从而提升开关电源的性能。纳米软件开关电源自动化测试软件助力纹波和噪声测试,提升测试效能。 开关电源纹波及噪声测试方法…...
git的使用——如何创建.gitignore文件,排除target、.idea文件夹的提交
前言 git作为开发人员必备的技能,需要熟练掌握,本篇博客记录一些git使用的场景,结合具体问题进行git使用的记录。以gitee的使用为例。 本篇博客介绍如何创建.gitignore文件,排除一些文件夹的提交,比如排除target、.i…...
react-antd组件 input输入框: 实现按回车搜索
目录 法1: 法2: 法1: 在Input组件上绑定onKeyUp方法 import { Input, message } from antd;class App extends React.Component{handeleSousuo () > {this.props.form.validateFields((error, values) > {if(!error){axios.post().t…...
python_PyQt5日周月K线纵向对齐显示_1_数据处理
目录 写在前面: 图形结果显示: 数据设计: 代码: 从日数据中计算周数据、月数据 生成图形显示需要的数据格式 写在前面: “PyQt5日周月K线纵向对齐显示”,将分三篇博文描述 1 数据处理。将数据处理成…...
leetcode经典面试150题---4.删除有序数组中的重复项II
目录 题目描述 前置知识 代码 方法一 双指针 思路 图解 实现 复杂度 题目描述 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间&…...
Transformer英语-法语机器翻译实例
依照Transformer结构来实例化编码器-解码器模型。在这里,指定Transformer编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,我们在英语-法语机器翻译数据集上训练Transformer模型,如图11.2所示。 da…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
