基于计算机视觉的坑洼道路检测和识别-MathorCup A(深度学习版本)
1 2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛
赛道 A:基于计算机视觉的坑洼道路检测和识别
使用深度学习模型,pytorch版本进行图像训练和预测,使用ResNet50模型
2 文件夹预处理
因为给定的是所有图片都在一个文件夹里面,所以需要先进行处理,核心代码:
for file_name in file_names:source_path = os.path.join(source_folder, file_name)# 判断文件名中是否包含'a'字符if "normal" in file_name:# 如果包含'a'字符,将文件移动到文件夹Adestination_path = os.path.join(folder_normal, file_name)shutil.copy(source_path, destination_path)elif "potholes" in file_name:# 如果包含'bb'字符,将文件移动到文件夹BBdestination_path = os.path.join(folder_potholes, file_name)shutil.copy(source_path, destination_path)
移动后的图片所在文件夹显示

每个文件夹里面包含属于这一类的图片


3 使用ResNet50模型进行建模
3.1 ResNet50核心原理
- 输入层: 接收输入图像 卷积层1:对输入图像进行卷积操作,得到64个特征图批量标准化层1:对卷积层的输出进行批量标准化
- ReLU激活函数1:对批量标准化后的特征图进行非线性激活
- 残差块1:包含两个残差块,每个残差块由两个卷积层和一个批量标准化层组成ReLU激活函数2:对残差块1的输出进行非线性激活
- 批量标准化层2:对ReLU激活函数2的输出进行批量标准化。
- 卷积层2:对批量标准化后的特征图进行卷积操作,得到128个特征图残差块2:包含两个残差块,每个残差块由两个卷积层和一个批量标准化层组成ReLU激活函数3:对残差块2的输出进行非线性激活批量标准化层3:对ReLU激活函数3的输出进行批量标准化。卷积层3:对批量标准化后的特征图进行卷积操作,得到256个特征图

3.2 核心代码
3.2.1 数据预处理
数据预处理,归一化
transform = T.Compose([T.Resize(256),T.CenterCrop(224),T.ToTensor(),T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
3.2.2 训练集和测试集划分
# 划分数据集为训练集和测试集
validation_split = 0.2
dataset_size = len(custom_dataset)
split = int(validation_split * dataset_size)
indices = list(range(dataset_size))
np.random.shuffle(indices)
train_indices, test_indices = indices[split:], indices[:split]train_sampler = SubsetRandomSampler(train_indices)
test_sampler = SubsetRandomSampler(test_indices)# 创建数据加载器
batch_size= 128
train_loader = DataLoader(custom_dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(custom_dataset, batch_size=batch_size, sampler=test_sampler)
3.2.3 加载模型
from torchvision import models
model = models.resnet50(pretrained=True) # 导入resnet50网络# 修改最后一层,最后一层的神经元数目=类别数目,所以设置为100个
model.fc = torch.nn.Linear(in_features=2048, out_features=2)
3.2.4 训练
train = Variable(images).cuda()labels = Variable(labels).cuda()# 梯度清零optimizer.zero_grad()# 前向计算outputs = model(train)predicted = torch.max(outputs.data, 1)[1] # 预测标签acc = (predicted == labels).sum() / float(len(labels)) # 计算精度loss = error(outputs, labels) # 计算损失函数# 计算梯度loss.backward()# 更新梯度optimizer.step()train_loss_list.append(loss.data.cpu().item())train_acc_list.append(acc.cpu().item())
3.2.5 模型预测
遍历测试数据集
with torch.no_grad():for inputs, labels in test_loader:inputs = Variable(inputs).cuda()labels = Variable(labels).cuda()outputs = model(inputs)_, predicted = torch.max(outputs, 1) # 获取预测标签true_labels.extend(labels.cpu().numpy()) # 将真实标签添加到列表predicted_labels.extend(predicted.cpu().numpy()) # 将预测标签添加到列表
4 结果显示
要输出精度、F1 分数和分类报告等多种指标,你可以在训练模型之后使用Scikit-Learn的工具来进行评估和计算这些指标。
train data: 0 Loss: 0.1588 Accuracy: 0.9143
Accuracy: 0.9833333333333333
Precision: 0.9857142857142857
Recall: 0.9833333333333333
F1 Score: 0.9838964773544213
Classification Report:precision recall f1-score support0 1.00 0.98 0.99 541 0.86 1.00 0.92 6accuracy 0.98 60macro avg 0.93 0.99 0.96 60
weighted avg 0.99 0.98 0.98 60
完整代码:https://docs.qq.com/doc/DWEtRempVZ1NSZHdQ
相关文章:
基于计算机视觉的坑洼道路检测和识别-MathorCup A(深度学习版本)
1 2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛 赛道 A:基于计算机视觉的坑洼道路检测和识别 使用深度学习模型,pytorch版本进行图像训练和预测,使用ResNet50模型 2 文件夹预处理 因为给定的是所有图片都在一个文件夹里面…...
【考研数学】概率论与数理统计 —— 第七章 | 参数估计(1,基本概念及点估计法)
文章目录 引言一、参数估计的概念二、参数的点估计2.1 矩估计法2.2 最大似然估计法 写在最后 引言 我们之前学了那么多分布,如正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),泊松分布 P ( λ ) P(\lambda) P(λ) 等等,都是在已知 …...
获取文本长度
使用TextView的getLineCount方法,它可以返回TextView当前显示的行数。但是,这个方法只有在TextView绘制完成后才能返回正确的值,否则可能返回0。因此,需要在TextView的post方法中调用,或者在onWindowFocusChanged方法中…...
python html(文件/url/html字符串)转pdf
安装库 pip install pdfkit第二步 下载程序wkhtmltopdf https://wkhtmltopdf.org/downloads.html 下载7z压缩包 解压即可, 无需安装 解压后结构应该是这样, 我喜欢放在项目里, 相对路径引用(也可以使用绝对路径, 放其他地方) import pdfkit# 将 wkhtmltopdf.exe程序 路径 p…...
Spring概述
Spring概述 Spring 是最受欢迎的企业级 Java 应用程序开发框架,数以百万的来自世界各地的开发人员使用 Spring 框架来创建性能好、易于测试、可重用的代码。 Spring 框架是一个开源的 Java 平台,它最初是由 Rod Johnson 编写的,并且于 2003 …...
Linux网卡
网卡 网卡(Network Interface Card,NIC)是一种计算机硬件设备,也称为网络适配器或网络接口控制器。一个网卡就是一个接口 网卡组成和工作原理参考https://blog.csdn.net/tao546377318/article/details/51602298 每个网卡都拥有唯…...
【Python机器学习】零基础掌握ElasticNet变量选择回归器
如何优雅地解决房价预测问题? 房价预测一直是一个热门而复杂的话题。假设一个地产商希望准确地预测不同城市区域的房价,以便更有效地进行房地产投资。问题在于,房价是由多种因素共同决定的,例如地段、房屋面积、交通便利程度等。 为了解决这个问题,一个可行的思路是使用…...
【数据结构】模拟实现Vecotr
namespace my_vector {template <class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;//常量指针,指针指向的值不可以变;//构造函数vector():start(nullptr),finish(nullptr),end_of_storage(nullptr){}//析构函数…...
Qt开发: 利用Qt的charts模块绘制曲线、饼图、柱状图、折线图等各种图表
一、前言 Qt Charts模块是Qt提供的一个用于创建各种类型图表的功能模块。为开发人员提供了一种简单而强大的方式来可视化数据。Qt Charts模块基于Qt GUI框架构建,可以与其他Qt模块无缝集成,例如Qt Widgets、Qt Quick和Qt OpenGL。 Qt Charts模块包含了几个核心类: (1)Q…...
Redis:加速你的应用响应时间,提升用户体验
绝大部分写业务的程序员,在实际开发中使用 Redis 的时候,只会 Set Value 和 Get Value 两个操作,对 Redis 整体缺乏一个认知。这里对 Redis 常见问题做一个总结,解决大家的知识盲点。 1、为什么使用 Redis 在项目中使用 Redis&am…...
乐鑫 SoC 内存映射入门
微控制器 (MCU) 的性能和内存能力逐步提升,其复杂度也随之加大。特别是当用户需要配置内存管理单元来映射外部存储器芯片 (Flash/SPIRAM) 时,这种现象尤其明显。 开始在乐鑫 SoC 上运行 Zephyr RTOS 时,会发现这些 SoC 与 ARM 架构的 MCU 相…...
蓝凌EIS智慧协同平台saveImg接口存在任意文件上传漏洞
蓝凌EIS智慧协同平台saveImg接口存在任意文件上传漏洞 一、蓝凌EIS简介二、漏洞描述三、影响版本四、fofa查询语句五、漏洞复现六、深度复现1、发送如花2、哥斯拉直连 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者…...
【SEC 学习】美化 Linux 终端
一、步骤 1. 进入 /etc/bash.bashrc vim /etc/bash.bashrc2. 重新加载 bash.bashrc source /etc/bash.bashrc二、各参数指标 符号含义\u当前用户的账号名称\h仅取主机的第一个名字,如上例,则为fc4,.linux则被省略\H完整的主机名称。例如&…...
【Unity小技巧】可靠的相机抖动及如何同时处理多个震动(附项目源码)
文章目录 每篇一句前言安装虚拟相机虚拟相机震动测试代码控制震动清除震动控制震动的幅度和时间 两个不同的强弱震动同时发生源码完结 每篇一句 围在城里的人想逃出来,站在城外的人想冲进去,婚姻也罢,事业也罢,人生的欲望大都如此…...
【51单片机】51单片机概述(学习笔记)
一、课程简介 1、硬件设备 51单片机开发板 Win电脑 2、软件设备 Keil5:编写程序代码 STC-ISP:下载程序 有道词典 福昕阅读器 二、开发工具介绍 1、Keil5 keil.com > 下载C51版本 > 使用破解程序 2、STC-ISP 绿色版:直接运…...
make和new的区别
make和new都是golang用来分配内存(理论上都是在堆上分配),不同的是 new分配空间只是将内存清零,并没有初始化;而make分配之后只初始化内存new为每个类型都分配,而make专用于slice、map、channew返回类型指…...
vue3获取页面路径
import { useRouter, useRoute } from vue-routerconst router useRouter()router.currentRoute.value.path // 页面路径...
基于STM32闭环步进电机控制系统设计
**单片机设计介绍,1654基于STM32闭环步进电机控制系统设计(仿真,程序,说明) 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序文档 六、 文章目录 一 概要 基于STM32的闭环步进电机控制系统设计是…...
Java中的队列:各种类型及使用场景
在Java中,队列是一种重要的数据结构,用于存储按特定顺序排列的元素。队列在多线程环境中特别有用,因为它们可以用来解决并发问题。在Java中,队列主要分为以下几种类型: 接口: Queue: 这是Java Queue接口&…...
MappingMongoConverter原生mongo 枚举类ENUM映射使用的是name
j.l.IllegalArgumentException: No enum constant com.xxx.valobj.TypeEnum.stringat java.lang.Enum.valueOf...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
