当前位置: 首页 > news >正文

mediapipe 训练自有图像数据分类

参考:
https://developers.google.com/mediapipe/solutions/customization/image_classifier
https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollTo=plvO-YmcQn5g

安装:

pip install mediapipe-model-maker  -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com --use-pep517

版本错误情况

1)RuntimeError: File loading is not yet supported on Windows

其中mediapipe版本要大于等于0.10.0;下图中的要升级;不然后续用python 加载文件会报:

2)ImportError: cannot import name ‘array_record_module’ from ‘array_record.python’ ;参考:https://blog.csdn.net/LQ_001/article/details/130991571;原因:包依赖关系出现问题,原来版本 tensorflow-datasets==4.9.0

pip install tensorflow-datasets==4.8.3

在这里插入图片描述

在这里插入图片描述

1、训练代码

import os
import tensorflow as tf
assert tf.__version__.startswith('2')from mediapipe_model_maker import image_classifierimport matplotlib.pyplot as pltimage_path = os.path.join(os.path.dirname(r"C:\Users\loong\Downloads\mediapipe\flower_photos\flower_photos"), 'flower_photos')   ## down data  :https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz#Review datalabels = []
for i in os.listdir(image_path):if os.path.isdir(os.path.join(image_path, i)):labels.append(i)
print(labels)##plt 
NUM_EXAMPLES = 5for label in labels:label_dir = os.path.join(image_path, label)example_filenames = os.listdir(label_dir)[:NUM_EXAMPLES]fig, axs = plt.subplots(1, NUM_EXAMPLES, figsize=(10,2))for i in range(NUM_EXAMPLES):axs[i].imshow(plt.imread(os.path.join(label_dir, example_filenames[i])))axs[i].get_xaxis().set_visible(False)axs[i].get_yaxis().set_visible(False)fig.suptitle(f'Showing {NUM_EXAMPLES} examples for {label}')plt.show()

在这里插入图片描述

#Create dataset;训练集、测试集data = image_classifier.Dataset.from_folder(image_path)
train_data, remaining_data = data.split(0.8)
test_data, validation_data = remaining_data.split(0.5)## retrain model 训练模型spec = image_classifier.SupportedModels.MOBILENET_V2    ##有几个预训练模型,需要联网下载
hparams = image_classifier.HParams(export_dir="exported_model")  ##指定模型保存位置
options = image_classifier.ImageClassifierOptions(supported_model=spec, hparams=hparams)
model = image_classifier.ImageClassifier.create(train_data = train_data,validation_data = validation_data,options=options,
)## 验证模型
loss, acc = model.evaluate(test_data)
print(f'Test loss:{loss}, Test accuracy:{acc}')##保存模型
model.export_model()

在这里插入图片描述

在这里插入图片描述
默认训练是10epcos
在这里插入图片描述

查看训练tebsorboard:
注意ValueError: Duplicate plugins for name projector错误,参考https://blog.csdn.net/weixin_44966641/article/details/123292034;我这里是换了个conda环境重新安装个新的tensorflow解决

tensorboard --logdir=.

日志存放默认地址
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

##模型压缩
from mediapipe_model_maker import quantizationquantization_config = quantization.QuantizationConfig.for_int8(train_data)
model.export_model(model_name="model_int8.tflite", quantization_config=quantization_config)

从8M缩小到3M左右
在这里插入图片描述

2、加载推理

参考:https://blog.csdn.net/weixin_42357472/article/details/131322076

import mediapipe as mpBaseOptions = mp.tasks.BaseOptions
ImageClassifier = mp.tasks.vision.ImageClassifier
ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions
VisionRunningMode = mp.tasks.vision.RunningModeoptions = ImageClassifierOptions(base_options=BaseOptions(model_asset_path=r"C:\User**ediapipe\model.tflite"),max_results=5,running_mode=VisionRunningMode.IMAGE)   ##加载模型classifier = ImageClassifier.create_from_options(options)# Load the input image from an image file.
mp_image = mp.Image.create_from_file(r"C:\Users\loong\Downloads\sun2.jpg")# Perform image classification on the provided single image.
classification_result = classifier.classify(mp_image)
classification_result

在这里插入图片描述
在这里插入图片描述

相关文章:

mediapipe 训练自有图像数据分类

参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装&#xff1a…...

【pytorch】torch.gather()函数

dim0时 index[ [x1,x2,x2],[y1,y2,y2],[z1,z2,z3] ]如果dim0 填入方式为: index[ [(x1,0),(x2,1),(x3,2)][(y1,0),(y2,1),(y3,2)][(z1,0),(z2,1),(z3,2)] ]input [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12] ] # shape(3,4) input torch.…...

Mac 安装psycopg2,报错Error: pg_config executable not found.

在mac 上安装psycopg2的方法:执行:pip3 install psycopg2-binary。 如果执行pip3 install psycopg2,无法安装psycopg2 报错信息如下: Collecting psycopg2Using cached psycopg2-2.9.9.tar.gz (384 kB)Preparing metadata (set…...

域名系统 DNS

DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…...

Vue $nextTick 模板解析后在执行的函数

this.$nextTick(()>{ 模板解析后在执行的函数 })...

VBA技术资料MF76:将自定义颜色添加到调色板

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...

zilong-20231030

1)k个反转 2)n!转12进制 求末尾多少0 一共有几位 (考虑了溢出问题) 3)大量数据获取前10个 4)reemap地城结构 5)红黑树规则特性 6)热更 7)压测 8)业务 跨服实现 9)有哪些线程以及怎么分配...

目标检测算法发展史

前言 比起图像识别,现在图片生成技术要更加具有吸引力,但是要步入AIGC技术领域,首先不推荐一上来就接触那些已经成熟闭源的包装好了再提供给你的接口网站,会使用别人的模型生成一些图片就能叫自己会AIGC了吗?那样真正…...

React 生成传递给无障碍属性的唯一 ID

useId() 在组件的顶层调用 useId 生成唯一 ID: import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID,与此特定组件中的 useI…...

十种排序算法(1) - 准备测试函数和工具

1.准备工作 我们先写一堆工具&#xff0c;后续要用&#xff0c;不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…...

IRF联动 BFD-MAD

文章目录 IRF堆叠一、主设备配置二、备设备配置三、验证 MAD检测一、MAD检测二、MAD验证 本实验以2台设备进行堆叠示例&#xff0c;按照配置顺序&#xff0c;先配置主设备&#xff0c;再配置备设备。在IRF配置前暂时先不接堆叠线&#xff0c;按步骤提示接线。 IRF堆叠 一、主设…...

双向链表的初步练习

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇: Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”…...

IDE的组成

集成开发环境&#xff08;IDE&#xff0c;Integrated Development Environment &#xff09;是用于提供程序开发环境的应用程序&#xff0c;一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…...

项目解读_v2

1. 项目介绍 如果使用task2-1作为示例时&#xff0c; 运行process.py的过程中需要确认 process调用的是函数 preprocess_ast_wav2vec(wav, fr) 1.1 任务简介 首个开源的儿科呼吸音数据集&#xff0c; 通过邀请11位医师标注&#xff1b; 数字听诊器的采样频率和量化分辨率分…...

杀毒软件哪个好,杀毒软件有哪些

安全杀毒软件是一种专门用于检测、防止和清除计算机病毒、恶意软件和其他安全威胁的软件。这类软件通常具备以下功能&#xff1a; 1. 实时监测&#xff1a;通过实时监测计算机系统&#xff0c;能够发现并防止病毒、恶意软件等安全威胁的入侵。 2. 扫描和清除&#xff1a;可以…...

Ubuntu上安装配置Nginx

要在 Ubuntu 上安装 Nginx&#xff0c;请按照以下步骤进行操作&#xff1a; 打开终端&#xff1a;可以使用快捷键 Ctrl Alt T 打开终端&#xff0c;或者在开始菜单中搜索 “Terminal” 并点击打开。 更新软件包列表&#xff1a;在终端中运行以下命令&#xff0c;以确保软件包…...

C++之string

C之string #include <iostream>using namespace std;/*string();//创建一个空的字符串string(const char* s);//使用字符串s初始化string(const string& str);//使用一个string对象初始化另外一个string对象string(int n,char c);//使用n个字符c初始化*/void test1()…...

多线程---单例模式

文章目录 什么是单例模式&#xff1f;饿汉模式懒汉模式版本一&#xff1a;最简单的懒汉模式版本二&#xff1a;考虑懒汉模式存在的线程安全问题版本三&#xff1a;更完善的解决线程安全问题版本四&#xff1a;解决指令重排序问题 什么是单例模式&#xff1f; 单例模式&#xf…...

SpringBoot相比于Spring的优点(自动配置和依赖管理)

自动配置 例子见真章 我们先看一下我们Spring整合Druid的过程&#xff0c;以及我们使用SpringBoot整合Druid的过程我们就知道我们SpringBoot的好处了。 Spring方式 Spring方式分为两种&#xff0c;第一种就是我们使用xml进行整合&#xff0c;第二种就是使用我们注解进行简化…...

SAP SPAD新建打印纸张

SAP SPAD新建打印纸张 1.事务代码SPAD 2.完全管理&#xff0d;设备类型&#xff0d;页格式-显示(创建格式页) 3.按标准A4纸张为模板参考创建。同一个纸张纵向/横向各创建1次(创建格式页) 4.完全管理&#xff0d;设备类型&#xff0d;格式类型-显示(创建格式类型&#xff0…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

SQL进阶之旅 Day 22:批处理与游标优化

【SQL进阶之旅 Day 22】批处理与游标优化 文章简述&#xff08;300字左右&#xff09; 在数据库开发中&#xff0c;面对大量数据的处理任务时&#xff0c;单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”&#xff0c;深入探讨如何通过批量操作和游标技术提…...