mediapipe 训练自有图像数据分类
参考:
https://developers.google.com/mediapipe/solutions/customization/image_classifier
https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollTo=plvO-YmcQn5g
安装:
pip install mediapipe-model-maker -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com --use-pep517
版本错误情况
1)RuntimeError: File loading is not yet supported on Windows
其中mediapipe版本要大于等于0.10.0;下图中的要升级;不然后续用python 加载文件会报:
2)ImportError: cannot import name ‘array_record_module’ from ‘array_record.python’ ;参考:https://blog.csdn.net/LQ_001/article/details/130991571;原因:包依赖关系出现问题,原来版本 tensorflow-datasets==4.9.0
pip install tensorflow-datasets==4.8.3


1、训练代码
import os
import tensorflow as tf
assert tf.__version__.startswith('2')from mediapipe_model_maker import image_classifierimport matplotlib.pyplot as pltimage_path = os.path.join(os.path.dirname(r"C:\Users\loong\Downloads\mediapipe\flower_photos\flower_photos"), 'flower_photos') ## down data :https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz#Review datalabels = []
for i in os.listdir(image_path):if os.path.isdir(os.path.join(image_path, i)):labels.append(i)
print(labels)##plt
NUM_EXAMPLES = 5for label in labels:label_dir = os.path.join(image_path, label)example_filenames = os.listdir(label_dir)[:NUM_EXAMPLES]fig, axs = plt.subplots(1, NUM_EXAMPLES, figsize=(10,2))for i in range(NUM_EXAMPLES):axs[i].imshow(plt.imread(os.path.join(label_dir, example_filenames[i])))axs[i].get_xaxis().set_visible(False)axs[i].get_yaxis().set_visible(False)fig.suptitle(f'Showing {NUM_EXAMPLES} examples for {label}')plt.show()

#Create dataset;训练集、测试集data = image_classifier.Dataset.from_folder(image_path)
train_data, remaining_data = data.split(0.8)
test_data, validation_data = remaining_data.split(0.5)## retrain model 训练模型spec = image_classifier.SupportedModels.MOBILENET_V2 ##有几个预训练模型,需要联网下载
hparams = image_classifier.HParams(export_dir="exported_model") ##指定模型保存位置
options = image_classifier.ImageClassifierOptions(supported_model=spec, hparams=hparams)
model = image_classifier.ImageClassifier.create(train_data = train_data,validation_data = validation_data,options=options,
)## 验证模型
loss, acc = model.evaluate(test_data)
print(f'Test loss:{loss}, Test accuracy:{acc}')##保存模型
model.export_model()


默认训练是10epcos

查看训练tebsorboard:
注意ValueError: Duplicate plugins for name projector错误,参考https://blog.csdn.net/weixin_44966641/article/details/123292034;我这里是换了个conda环境重新安装个新的tensorflow解决
tensorboard --logdir=.
日志存放默认地址



##模型压缩
from mediapipe_model_maker import quantizationquantization_config = quantization.QuantizationConfig.for_int8(train_data)
model.export_model(model_name="model_int8.tflite", quantization_config=quantization_config)
从8M缩小到3M左右

2、加载推理
参考:https://blog.csdn.net/weixin_42357472/article/details/131322076
import mediapipe as mpBaseOptions = mp.tasks.BaseOptions
ImageClassifier = mp.tasks.vision.ImageClassifier
ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions
VisionRunningMode = mp.tasks.vision.RunningModeoptions = ImageClassifierOptions(base_options=BaseOptions(model_asset_path=r"C:\User**ediapipe\model.tflite"),max_results=5,running_mode=VisionRunningMode.IMAGE) ##加载模型classifier = ImageClassifier.create_from_options(options)# Load the input image from an image file.
mp_image = mp.Image.create_from_file(r"C:\Users\loong\Downloads\sun2.jpg")# Perform image classification on the provided single image.
classification_result = classifier.classify(mp_image)
classification_result


相关文章:
mediapipe 训练自有图像数据分类
参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装:…...
【pytorch】torch.gather()函数
dim0时 index[ [x1,x2,x2],[y1,y2,y2],[z1,z2,z3] ]如果dim0 填入方式为: index[ [(x1,0),(x2,1),(x3,2)][(y1,0),(y2,1),(y3,2)][(z1,0),(z2,1),(z3,2)] ]input [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12] ] # shape(3,4) input torch.…...
Mac 安装psycopg2,报错Error: pg_config executable not found.
在mac 上安装psycopg2的方法:执行:pip3 install psycopg2-binary。 如果执行pip3 install psycopg2,无法安装psycopg2 报错信息如下: Collecting psycopg2Using cached psycopg2-2.9.9.tar.gz (384 kB)Preparing metadata (set…...
域名系统 DNS
DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…...
Vue $nextTick 模板解析后在执行的函数
this.$nextTick(()>{ 模板解析后在执行的函数 })...
VBA技术资料MF76:将自定义颜色添加到调色板
我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...
zilong-20231030
1)k个反转 2)n!转12进制 求末尾多少0 一共有几位 (考虑了溢出问题) 3)大量数据获取前10个 4)reemap地城结构 5)红黑树规则特性 6)热更 7)压测 8)业务 跨服实现 9)有哪些线程以及怎么分配...
目标检测算法发展史
前言 比起图像识别,现在图片生成技术要更加具有吸引力,但是要步入AIGC技术领域,首先不推荐一上来就接触那些已经成熟闭源的包装好了再提供给你的接口网站,会使用别人的模型生成一些图片就能叫自己会AIGC了吗?那样真正…...
React 生成传递给无障碍属性的唯一 ID
useId() 在组件的顶层调用 useId 生成唯一 ID: import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID,与此特定组件中的 useI…...
十种排序算法(1) - 准备测试函数和工具
1.准备工作 我们先写一堆工具,后续要用,不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…...
IRF联动 BFD-MAD
文章目录 IRF堆叠一、主设备配置二、备设备配置三、验证 MAD检测一、MAD检测二、MAD验证 本实验以2台设备进行堆叠示例,按照配置顺序,先配置主设备,再配置备设备。在IRF配置前暂时先不接堆叠线,按步骤提示接线。 IRF堆叠 一、主设…...
双向链表的初步练习
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇: Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”…...
IDE的组成
集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…...
项目解读_v2
1. 项目介绍 如果使用task2-1作为示例时, 运行process.py的过程中需要确认 process调用的是函数 preprocess_ast_wav2vec(wav, fr) 1.1 任务简介 首个开源的儿科呼吸音数据集, 通过邀请11位医师标注; 数字听诊器的采样频率和量化分辨率分…...
杀毒软件哪个好,杀毒软件有哪些
安全杀毒软件是一种专门用于检测、防止和清除计算机病毒、恶意软件和其他安全威胁的软件。这类软件通常具备以下功能: 1. 实时监测:通过实时监测计算机系统,能够发现并防止病毒、恶意软件等安全威胁的入侵。 2. 扫描和清除:可以…...
Ubuntu上安装配置Nginx
要在 Ubuntu 上安装 Nginx,请按照以下步骤进行操作: 打开终端:可以使用快捷键 Ctrl Alt T 打开终端,或者在开始菜单中搜索 “Terminal” 并点击打开。 更新软件包列表:在终端中运行以下命令,以确保软件包…...
C++之string
C之string #include <iostream>using namespace std;/*string();//创建一个空的字符串string(const char* s);//使用字符串s初始化string(const string& str);//使用一个string对象初始化另外一个string对象string(int n,char c);//使用n个字符c初始化*/void test1()…...
多线程---单例模式
文章目录 什么是单例模式?饿汉模式懒汉模式版本一:最简单的懒汉模式版本二:考虑懒汉模式存在的线程安全问题版本三:更完善的解决线程安全问题版本四:解决指令重排序问题 什么是单例模式? 单例模式…...
SpringBoot相比于Spring的优点(自动配置和依赖管理)
自动配置 例子见真章 我们先看一下我们Spring整合Druid的过程,以及我们使用SpringBoot整合Druid的过程我们就知道我们SpringBoot的好处了。 Spring方式 Spring方式分为两种,第一种就是我们使用xml进行整合,第二种就是使用我们注解进行简化…...
SAP SPAD新建打印纸张
SAP SPAD新建打印纸张 1.事务代码SPAD 2.完全管理-设备类型-页格式-显示(创建格式页) 3.按标准A4纸张为模板参考创建。同一个纸张纵向/横向各创建1次(创建格式页) 4.完全管理-设备类型-格式类型-显示(创建格式类型࿰…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...
uniapp获取当前位置和经纬度信息
1.1. 获取当前位置和经纬度信息(需要配置高的SDK) 调用uni-app官方API中的uni.chooseLocation(),即打开地图选择位置。 <button click"getAddress">获取定位</button> const getAddress () > {uni.chooseLocatio…...
