有监督学习线性回归
1、目标分析(回归问题还是分类问题?)
2、获取、处理数据
3、创建线性回归模型
4、训练模型
5、模型测试
x_data = [[6000, 58], [9000, 77], [11000, 89], [15000, 54]] # 样本特征数据
y_data = [30000, 55010, 73542, 63201] # 样本目标数据from sklearn.linear_model import LinearRegression # 创建线性回归模型linemodel = LinearRegression() # 创建一个空的LinearRegression模型# 训练模型
linemodel.fit(x_data, y_data)
# linemodel.fit 是指使用线性模型进行拟合操作。具体来说,它是用来训练线性回归模型的方法。
# 在训练过程中,模型会根据输入的数据和标签进行优化,以得到最佳的回归函数参数。 # 模型测试
score = linemodel.score(x_data, y_data) # linemodel.score是用来评估线性回归模型的拟合优度的方法。
# 它返回一个介于0和1之间的值,表示模型对目标变量的解释程度。该得分越接近1,说明模型的拟合效果越好
print(score)from sklearn.metrics import mean_absolute_error,mean_squared_error # 平均绝对误差(MAE)和均方误差(MSE)# 平均绝对误差
y_pred=linemodel.predict(x_data) # 使用训练好的模型对训练数据进行预测,返回预测的结果。
mae = mean_absolute_error(y_data,y_pred)
print('平均绝对误差:',mae)# 均方误差
k = mean_squared_error(y_data,y_pred)
print('均方误差:',k)# 代入数据
sun_data = [[12000, 60]]
sun_pred = linemodel.predict(sun_data) # linemodel.predict 用来对给定的数据集进行预测
print(sun_pred)w1,w2 = linemodel.coef_ # 获取模型中回归系数的值。
b=linemodel.intercept_ # 获取模型中的截距值。
print('y={:.2f}x1+{:.2f}x2{:.2f}'.format(w1,w2,b)) # 输出线性回归模型的公式,其中w1和w2是回归系数,b是截距
平均绝对误差: 466.1740195003513
均方误差: 328175.6684719794
[55484.33779181]
y=4.06x1+743.15x2-37831.86
相关文章:
有监督学习线性回归
1、目标分析(回归问题还是分类问题?) 2、获取、处理数据 3、创建线性回归模型 4、训练模型 5、模型测试 x_data [[6000, 58], [9000, 77], [11000, 89], [15000, 54]] # 样本特征数据 y_data [30000, 55010, 73542, 63201] # 样本目标数…...
如何在vscode中添加less插件
Less (Leaner Style Sheets 的缩写) 是一门向后兼容的 CSS 扩展语言。它对CSS 语言增加了少许方便的扩展,通过less可以编写更少的代码实现更强大的样式。但less不是css,浏览器不能直接识别,即浏览器无法执行less代码&a…...
mediapipe 训练自有图像数据分类
参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装:…...
【pytorch】torch.gather()函数
dim0时 index[ [x1,x2,x2],[y1,y2,y2],[z1,z2,z3] ]如果dim0 填入方式为: index[ [(x1,0),(x2,1),(x3,2)][(y1,0),(y2,1),(y3,2)][(z1,0),(z2,1),(z3,2)] ]input [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12] ] # shape(3,4) input torch.…...
Mac 安装psycopg2,报错Error: pg_config executable not found.
在mac 上安装psycopg2的方法:执行:pip3 install psycopg2-binary。 如果执行pip3 install psycopg2,无法安装psycopg2 报错信息如下: Collecting psycopg2Using cached psycopg2-2.9.9.tar.gz (384 kB)Preparing metadata (set…...
域名系统 DNS
DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…...
Vue $nextTick 模板解析后在执行的函数
this.$nextTick(()>{ 模板解析后在执行的函数 })...
VBA技术资料MF76:将自定义颜色添加到调色板
我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...
zilong-20231030
1)k个反转 2)n!转12进制 求末尾多少0 一共有几位 (考虑了溢出问题) 3)大量数据获取前10个 4)reemap地城结构 5)红黑树规则特性 6)热更 7)压测 8)业务 跨服实现 9)有哪些线程以及怎么分配...
目标检测算法发展史
前言 比起图像识别,现在图片生成技术要更加具有吸引力,但是要步入AIGC技术领域,首先不推荐一上来就接触那些已经成熟闭源的包装好了再提供给你的接口网站,会使用别人的模型生成一些图片就能叫自己会AIGC了吗?那样真正…...
React 生成传递给无障碍属性的唯一 ID
useId() 在组件的顶层调用 useId 生成唯一 ID: import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID,与此特定组件中的 useI…...
十种排序算法(1) - 准备测试函数和工具
1.准备工作 我们先写一堆工具,后续要用,不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…...
IRF联动 BFD-MAD
文章目录 IRF堆叠一、主设备配置二、备设备配置三、验证 MAD检测一、MAD检测二、MAD验证 本实验以2台设备进行堆叠示例,按照配置顺序,先配置主设备,再配置备设备。在IRF配置前暂时先不接堆叠线,按步骤提示接线。 IRF堆叠 一、主设…...
双向链表的初步练习
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇: Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”…...
IDE的组成
集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…...
项目解读_v2
1. 项目介绍 如果使用task2-1作为示例时, 运行process.py的过程中需要确认 process调用的是函数 preprocess_ast_wav2vec(wav, fr) 1.1 任务简介 首个开源的儿科呼吸音数据集, 通过邀请11位医师标注; 数字听诊器的采样频率和量化分辨率分…...
杀毒软件哪个好,杀毒软件有哪些
安全杀毒软件是一种专门用于检测、防止和清除计算机病毒、恶意软件和其他安全威胁的软件。这类软件通常具备以下功能: 1. 实时监测:通过实时监测计算机系统,能够发现并防止病毒、恶意软件等安全威胁的入侵。 2. 扫描和清除:可以…...
Ubuntu上安装配置Nginx
要在 Ubuntu 上安装 Nginx,请按照以下步骤进行操作: 打开终端:可以使用快捷键 Ctrl Alt T 打开终端,或者在开始菜单中搜索 “Terminal” 并点击打开。 更新软件包列表:在终端中运行以下命令,以确保软件包…...
C++之string
C之string #include <iostream>using namespace std;/*string();//创建一个空的字符串string(const char* s);//使用字符串s初始化string(const string& str);//使用一个string对象初始化另外一个string对象string(int n,char c);//使用n个字符c初始化*/void test1()…...
多线程---单例模式
文章目录 什么是单例模式?饿汉模式懒汉模式版本一:最简单的懒汉模式版本二:考虑懒汉模式存在的线程安全问题版本三:更完善的解决线程安全问题版本四:解决指令重排序问题 什么是单例模式? 单例模式…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
