有监督学习线性回归
1、目标分析(回归问题还是分类问题?)
2、获取、处理数据
3、创建线性回归模型
4、训练模型
5、模型测试
x_data = [[6000, 58], [9000, 77], [11000, 89], [15000, 54]] # 样本特征数据
y_data = [30000, 55010, 73542, 63201] # 样本目标数据from sklearn.linear_model import LinearRegression # 创建线性回归模型linemodel = LinearRegression() # 创建一个空的LinearRegression模型# 训练模型
linemodel.fit(x_data, y_data)
# linemodel.fit 是指使用线性模型进行拟合操作。具体来说,它是用来训练线性回归模型的方法。
# 在训练过程中,模型会根据输入的数据和标签进行优化,以得到最佳的回归函数参数。 # 模型测试
score = linemodel.score(x_data, y_data) # linemodel.score是用来评估线性回归模型的拟合优度的方法。
# 它返回一个介于0和1之间的值,表示模型对目标变量的解释程度。该得分越接近1,说明模型的拟合效果越好
print(score)from sklearn.metrics import mean_absolute_error,mean_squared_error # 平均绝对误差(MAE)和均方误差(MSE)# 平均绝对误差
y_pred=linemodel.predict(x_data) # 使用训练好的模型对训练数据进行预测,返回预测的结果。
mae = mean_absolute_error(y_data,y_pred)
print('平均绝对误差:',mae)# 均方误差
k = mean_squared_error(y_data,y_pred)
print('均方误差:',k)# 代入数据
sun_data = [[12000, 60]]
sun_pred = linemodel.predict(sun_data) # linemodel.predict 用来对给定的数据集进行预测
print(sun_pred)w1,w2 = linemodel.coef_ # 获取模型中回归系数的值。
b=linemodel.intercept_ # 获取模型中的截距值。
print('y={:.2f}x1+{:.2f}x2{:.2f}'.format(w1,w2,b)) # 输出线性回归模型的公式,其中w1和w2是回归系数,b是截距
平均绝对误差: 466.1740195003513
均方误差: 328175.6684719794
[55484.33779181]
y=4.06x1+743.15x2-37831.86
相关文章:
有监督学习线性回归
1、目标分析(回归问题还是分类问题?) 2、获取、处理数据 3、创建线性回归模型 4、训练模型 5、模型测试 x_data [[6000, 58], [9000, 77], [11000, 89], [15000, 54]] # 样本特征数据 y_data [30000, 55010, 73542, 63201] # 样本目标数…...
如何在vscode中添加less插件
Less (Leaner Style Sheets 的缩写) 是一门向后兼容的 CSS 扩展语言。它对CSS 语言增加了少许方便的扩展,通过less可以编写更少的代码实现更强大的样式。但less不是css,浏览器不能直接识别,即浏览器无法执行less代码&a…...
mediapipe 训练自有图像数据分类
参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装:…...
【pytorch】torch.gather()函数
dim0时 index[ [x1,x2,x2],[y1,y2,y2],[z1,z2,z3] ]如果dim0 填入方式为: index[ [(x1,0),(x2,1),(x3,2)][(y1,0),(y2,1),(y3,2)][(z1,0),(z2,1),(z3,2)] ]input [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12] ] # shape(3,4) input torch.…...
Mac 安装psycopg2,报错Error: pg_config executable not found.
在mac 上安装psycopg2的方法:执行:pip3 install psycopg2-binary。 如果执行pip3 install psycopg2,无法安装psycopg2 报错信息如下: Collecting psycopg2Using cached psycopg2-2.9.9.tar.gz (384 kB)Preparing metadata (set…...
域名系统 DNS
DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…...
Vue $nextTick 模板解析后在执行的函数
this.$nextTick(()>{ 模板解析后在执行的函数 })...
VBA技术资料MF76:将自定义颜色添加到调色板
我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...
zilong-20231030
1)k个反转 2)n!转12进制 求末尾多少0 一共有几位 (考虑了溢出问题) 3)大量数据获取前10个 4)reemap地城结构 5)红黑树规则特性 6)热更 7)压测 8)业务 跨服实现 9)有哪些线程以及怎么分配...
目标检测算法发展史
前言 比起图像识别,现在图片生成技术要更加具有吸引力,但是要步入AIGC技术领域,首先不推荐一上来就接触那些已经成熟闭源的包装好了再提供给你的接口网站,会使用别人的模型生成一些图片就能叫自己会AIGC了吗?那样真正…...
React 生成传递给无障碍属性的唯一 ID
useId() 在组件的顶层调用 useId 生成唯一 ID: import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID,与此特定组件中的 useI…...
十种排序算法(1) - 准备测试函数和工具
1.准备工作 我们先写一堆工具,后续要用,不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…...
IRF联动 BFD-MAD
文章目录 IRF堆叠一、主设备配置二、备设备配置三、验证 MAD检测一、MAD检测二、MAD验证 本实验以2台设备进行堆叠示例,按照配置顺序,先配置主设备,再配置备设备。在IRF配置前暂时先不接堆叠线,按步骤提示接线。 IRF堆叠 一、主设…...
双向链表的初步练习
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇: Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”…...
IDE的组成
集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…...
项目解读_v2
1. 项目介绍 如果使用task2-1作为示例时, 运行process.py的过程中需要确认 process调用的是函数 preprocess_ast_wav2vec(wav, fr) 1.1 任务简介 首个开源的儿科呼吸音数据集, 通过邀请11位医师标注; 数字听诊器的采样频率和量化分辨率分…...
杀毒软件哪个好,杀毒软件有哪些
安全杀毒软件是一种专门用于检测、防止和清除计算机病毒、恶意软件和其他安全威胁的软件。这类软件通常具备以下功能: 1. 实时监测:通过实时监测计算机系统,能够发现并防止病毒、恶意软件等安全威胁的入侵。 2. 扫描和清除:可以…...
Ubuntu上安装配置Nginx
要在 Ubuntu 上安装 Nginx,请按照以下步骤进行操作: 打开终端:可以使用快捷键 Ctrl Alt T 打开终端,或者在开始菜单中搜索 “Terminal” 并点击打开。 更新软件包列表:在终端中运行以下命令,以确保软件包…...
C++之string
C之string #include <iostream>using namespace std;/*string();//创建一个空的字符串string(const char* s);//使用字符串s初始化string(const string& str);//使用一个string对象初始化另外一个string对象string(int n,char c);//使用n个字符c初始化*/void test1()…...
多线程---单例模式
文章目录 什么是单例模式?饿汉模式懒汉模式版本一:最简单的懒汉模式版本二:考虑懒汉模式存在的线程安全问题版本三:更完善的解决线程安全问题版本四:解决指令重排序问题 什么是单例模式? 单例模式…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...
