机器学习-朴素贝叶斯之多项式模型
多项式模型:
记住一定用于离散的对象,不能是连续的
于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值
因为多项式不接受负值的输入,所以样本数据的特征为数值型数据,必须归一化处理保证数据里没有负数
其中需要用到贝叶斯概率公式:如下
当分子出现0时候,需要用到拉普拉斯平滑系数
贝叶斯概率公式,来自Wang’s Blog的原创
模型构建与训练:
需要用到的api是:from sklearn.naive_bayes import MultinomialNB
我们还需要对文章内容进行提取需要用到的api是:from sklearn.feature_extraction.text import TfidfVectorizer
英文的可以用这种方法进行分词中文的需要自己进行分词
实验如下:
导入贝叶斯多项式模型
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
data = datasets.fetch_20newsgroups(data_home='./datasets',subset='all')
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
tf = TfidfVectorizer()
tf_feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(tf_feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))
print(target)
print(feature)
输出结果:
显示的没办法爬数据,我又换了一组数据
# 导入贝叶斯多项式模型
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
# data = datasets.fetch_20newsgroups(data_home='./datasets', subset='all')
data = datasets.load_iris()
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
# tf = TfidfVectorizer()
# feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)print(target)
print(feature)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))
此时输出结果:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
[[5.1 3.5 1.4 0.2][4.9 3. 1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5. 3.6 1.4 0.2][5.4 3.9 1.7 0.4][4.6 3.4 1.4 0.3][5. 3.4 1.5 0.2][4.4 2.9 1.4 0.2][4.9 3.1 1.5 0.1][5.4 3.7 1.5 0.2][4.8 3.4 1.6 0.2][4.8 3. 1.4 0.1][4.3 3. 1.1 0.1][5.8 4. 1.2 0.2][5.7 4.4 1.5 0.4][5.4 3.9 1.3 0.4][5.1 3.5 1.4 0.3][5.7 3.8 1.7 0.3][5.1 3.8 1.5 0.3][5.4 3.4 1.7 0.2][5.1 3.7 1.5 0.4][4.6 3.6 1. 0.2][5.1 3.3 1.7 0.5][4.8 3.4 1.9 0.2][5. 3. 1.6 0.2][5. 3.4 1.6 0.4][5.2 3.5 1.5 0.2][5.2 3.4 1.4 0.2][4.7 3.2 1.6 0.2][4.8 3.1 1.6 0.2][5.4 3.4 1.5 0.4][5.2 4.1 1.5 0.1][5.5 4.2 1.4 0.2][4.9 3.1 1.5 0.2][5. 3.2 1.2 0.2][5.5 3.5 1.3 0.2][4.9 3.6 1.4 0.1][4.4 3. 1.3 0.2][5.1 3.4 1.5 0.2][5. 3.5 1.3 0.3][4.5 2.3 1.3 0.3][4.4 3.2 1.3 0.2][5. 3.5 1.6 0.6][5.1 3.8 1.9 0.4][4.8 3. 1.4 0.3][5.1 3.8 1.6 0.2][4.6 3.2 1.4 0.2][5.3 3.7 1.5 0.2][5. 3.3 1.4 0.2][7. 3.2 4.7 1.4][6.4 3.2 4.5 1.5][6.9 3.1 4.9 1.5][5.5 2.3 4. 1.3][6.5 2.8 4.6 1.5][5.7 2.8 4.5 1.3][6.3 3.3 4.7 1.6][4.9 2.4 3.3 1. ][6.6 2.9 4.6 1.3][5.2 2.7 3.9 1.4][5. 2. 3.5 1. ][5.9 3. 4.2 1.5][6. 2.2 4. 1. ][6.1 2.9 4.7 1.4][5.6 2.9 3.6 1.3][6.7 3.1 4.4 1.4][5.6 3. 4.5 1.5][5.8 2.7 4.1 1. ][6.2 2.2 4.5 1.5][5.6 2.5 3.9 1.1][5.9 3.2 4.8 1.8][6.1 2.8 4. 1.3][6.3 2.5 4.9 1.5][6.1 2.8 4.7 1.2][6.4 2.9 4.3 1.3][6.6 3. 4.4 1.4][6.8 2.8 4.8 1.4][6.7 3. 5. 1.7][6. 2.9 4.5 1.5][5.7 2.6 3.5 1. ][5.5 2.4 3.8 1.1][5.5 2.4 3.7 1. ][5.8 2.7 3.9 1.2][6. 2.7 5.1 1.6][5.4 3. 4.5 1.5][6. 3.4 4.5 1.6][6.7 3.1 4.7 1.5][6.3 2.3 4.4 1.3][5.6 3. 4.1 1.3][5.5 2.5 4. 1.3][5.5 2.6 4.4 1.2][6.1 3. 4.6 1.4][5.8 2.6 4. 1.2][5. 2.3 3.3 1. ][5.6 2.7 4.2 1.3][5.7 3. 4.2 1.2][5.7 2.9 4.2 1.3][6.2 2.9 4.3 1.3][5.1 2.5 3. 1.1][5.7 2.8 4.1 1.3][6.3 3.3 6. 2.5][5.8 2.7 5.1 1.9][7.1 3. 5.9 2.1][6.3 2.9 5.6 1.8][6.5 3. 5.8 2.2][7.6 3. 6.6 2.1][4.9 2.5 4.5 1.7][7.3 2.9 6.3 1.8][6.7 2.5 5.8 1.8][7.2 3.6 6.1 2.5][6.5 3.2 5.1 2. ][6.4 2.7 5.3 1.9][6.8 3. 5.5 2.1][5.7 2.5 5. 2. ][5.8 2.8 5.1 2.4][6.4 3.2 5.3 2.3][6.5 3. 5.5 1.8][7.7 3.8 6.7 2.2][7.7 2.6 6.9 2.3][6. 2.2 5. 1.5][6.9 3.2 5.7 2.3][5.6 2.8 4.9 2. ][7.7 2.8 6.7 2. ][6.3 2.7 4.9 1.8][6.7 3.3 5.7 2.1][7.2 3.2 6. 1.8][6.2 2.8 4.8 1.8][6.1 3. 4.9 1.8][6.4 2.8 5.6 2.1][7.2 3. 5.8 1.6][7.4 2.8 6.1 1.9][7.9 3.8 6.4 2. ][6.4 2.8 5.6 2.2][6.3 2.8 5.1 1.5][6.1 2.6 5.6 1.4][7.7 3. 6.1 2.3][6.3 3.4 5.6 2.4][6.4 3.1 5.5 1.8][6. 3. 4.8 1.8][6.9 3.1 5.4 2.1][6.7 3.1 5.6 2.4][6.9 3.1 5.1 2.3][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3. 5.2 2.3][6.3 2.5 5. 1.9][6.5 3. 5.2 2. ][6.2 3.4 5.4 2.3][5.9 3. 5.1 1.8]]
0.9333333333333333
输出的效果还挺不错
相关文章:
机器学习-朴素贝叶斯之多项式模型
多项式模型: 记住一定用于离散的对象,不能是连续的 于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值 因为多项式不接受负值的输入,所以样本数据的特征为数值型数据&…...
下载的nginx证书转换成tomcat证书格式
1、下载的nginx证书格式 XXX.crt private.key 2、转换成JKS格式证书步骤 #crt格式证书转pem openssl x509 -in xxx.crt -out xxx.pem#先转成p12格式,此时注意,如果有别名,需要设置 openssl pkcs12 -export -in xxx.crt -inkey private.key…...

计算机毕业设计选题推荐-社区志愿者服务微信小程序/安卓APP-项目实战
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...
ES6中数值扩展
目录 二进制和八进制表示法 Number.isFinite() Number.isNaN() Number.parseInt()和Number.parseFloat() Number.isInteger() Math.trunc() Math.sign() Math.cbrt(): Math.clz32(): Math.imul(): Math.fround(): ES6中…...

sql-50练习题11-15
sql-50练习题11-15 前言数据库表结构介绍学生表课程表成绩表教师表 1-1 查询没有学全所有课程的同学的信息1-2 查询至少有一门课与学号为01的同学所学相同的同学的信息1-3 查询和1号的同学学习的课程完全相同的其他同学的信息1-4 查询没学过张三老师讲授的任一门课程的学生姓名…...

【多线程面试题十九】、 公平锁与非公平锁是怎么实现的?
文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官: 公平锁与非公平锁是怎么…...

LabVIEW背景颜色设为和其他程序或图像中一样
LabVIEW背景颜色设为和其他程序或图像中一样 有时候LabVIEW背景色要和其他程序或者图片的颜色保持一致,如果要求不高可以大致设置一下。如果要求较高,那可以按照如下的方式。 先用PS打开标准图像,之后用吸管工具选择图像上中的点࿰…...

图表参考线,数据对比一目了然_三叠云
参考线 路径 仪表盘 >> 仪表盘设计 功能简介 新增「参考线」功能。 参考线是在单个图表组件中添加的一条水平虚线,也可以配置两条线形成的参考区间,它表示该水平线上纵坐标值的大小。 使用场景: 通过辅助线的设置,可…...

【深度学习】Transformer、GPT、BERT、Seq2Seq什么区别?
请看vcr:https://transformers.run/back/transformer/...
数据结构与算法之LRU: 实现 LRU 缓存算法功能 (Javascript版)
关于LRU缓存 LRU - Lease Recently Used 最近使用 如果内存优先,只缓存最近使用的,删除 ‘沉睡’ 数据 核心 api: get set 分析 使用哈希表来实现, O(1)必须是有序的,常用放在前面,沉睡放在后面, 即:有序࿰…...

Matlab | 基于二次谱提取地震数据的地震子波
本文通过地震数据二次谱求取地震子波谱,具体方法如下: MATLAB代码实现如下: function w SndSpecExtWavelet(x, M) % 功能:基于二次谱提取输入地震数据data的地震子波wavelet % Extracting Wavelet from Input Seismic Dat…...

利用远程IO模块,轻松驾驭食品包装生产的自动化
常见的自动化包装系统,它的核心部分通常由一系列高端设备组成,包括自动开箱机、自动封箱机、自动捆扎机、装箱机器人、码垛机器人等。这些设备协同工作,形成一条高效运转的生产线,从开箱到装箱,再到码垛,每…...
华为OD机考算法题:计算最大乘积
题目部分 题目计算最大乘积难度易题目说明给定一个元素类型为小写字符串的数组,请计算两个没有相同字符的元素长度乘积的最大值。 如果没有符合条件的两个元素,返回 0。输入描述输入为一个半角逗号分隔的小写字符串的数组,2< 数组长度<…...

用友 GRP-U8 存在sql注入漏洞复现
0x01 漏洞介绍 用友 GRP-U8 license_check.jsp 存在sql注入,攻击者可利用该漏洞执行任意SQL语句,如查询数据、下载数据、写入webshell、执行系统命令以及绕过登录限制等。 fofa:app”用友-GRP-U8” 0x02 POC: /u8qx/license_check.jsp?kj…...

vue页面el-tab控件标签栏加入按钮功能
vue页面el-tab控件标签栏加入按钮功能 显示效果为: <el-tabs v-model"activeName" type"border-card" style"margin-right:5px"><el-tab-pane label"模型管理" name"first"><span slot"l…...
vue3使用ref和reactive
Vue 3引入了两个新的API,ref和reactive,用于创建响应式对象。这两个方法都位于Vue.prototype上,因此可以在组件实例中直接使用。 ref ref函数用于创建一个响应式引用对象。这个函数可以接受一个普通的变量或对象作为参数,并返回…...

7 款用于解锁iPhone密码的苹果解锁软件
无法访问您的 iPhone 一定是最烦人的情况之一。 即使您以前从未遇到过这种情况,做好准备总是一个好主意,而不是在它发生时感到无助。事实上,这种情况经常发生并且可能有很多实例,例如忘记密码或购买锁定的二手 iPhone。 牢记 Ap…...

.jnlp
首先配置电脑的java环境。 百度搜索jre下载,会有很多结果,一般选择官网进行下载。 下载正确的jre版本。 我的电脑是windows 64位,根据你自己电脑的情况选择版本进行下载。不懂自己电脑是多少位的可以看下一步。 查看电脑是64位还是32…...

Linux启动之uboot分析
Linux启动之uboot分析 uboot是什么?一、补充存储器概念1.存储器种类1.norflash - 是非易失性存储器(也就是掉电保存)2.nandflash - 是非易失性存储器(也就是掉电保存)3.SRAM - 静态随机访问存储器 - Static Random Acc…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...