当前位置: 首页 > news >正文

考虑时空相关性的风电功率预测误差MATLAB代码

关注“电气仔推送”获得资料(专享优惠)

风电功率预测置信区间误差分析拟合

1.风电功率预测误差--时空相关性

展示第一一个时间段的风电功率预测与实际风电功率值的比较。填充区域表示预测的不确定性,显示了95%置信区间内预测可能的范围。蓝色虚线表示置信区间的上限和下限。这种可视化有助于评估风电功率预测的准确性,并理.解与之相关的不确定性范围。在显示风电功率预测与实际风电功率值的同时,展示预测的不确定性,通过置信区间来描述预测的可信范围。

效果:

风电功率预测的95%置信区间的填充区域,绘制第一个时间段的风电功率预测折线图和实际风电功率值折线图,用虚线绘制表示置信区间上限和下限的两条线。

2.用于对风电场的预测误差进行分析,拟合误差分布,并可视化展示误差随时间和功率的变化情况,以及采样功率的分布。这有助于了解预测误差的特性,评估预测模型的准确性,并为风电场的运营和管理提供参考。

拟合分布

绘制三维概率密度图

绘制采样功率及功率变化过程:对A风电场的采样功率及一天内的功率变化过程进行了绘制。代码根据每个小时的实际功率值和对应的误差分布,进行100次的随机采样,得到了100 个采样功率值,并对其进行可视化展示。

相关文章:

考虑时空相关性的风电功率预测误差MATLAB代码

微❤关注“电气仔推送”获得资料(专享优惠) 风电功率预测置信区间误差分析拟合 1.风电功率预测误差--时空相关性 展示第一一个时间段的风电功率预测与实际风电功率值的比较。填充区域表示预测的不确定性,显示了95%置信区间内预测可能的范围…...

ASP.NET WebApi 极简依赖注入

文章目录 环境服务类启动项注入使用依赖注入的优点 环境 .NET Core 7.0ASP.NET CoreVisual Studio 2022 服务类 public class T_TempService {public T_TempService(){}public void Test(){}}启动项注入 #region 依赖注入 builder.Services.AddTransient<T_TempService&g…...

解决proteus仿真stm32,IIC通讯,IIC DEBUG无法显示从机应答信号的问题(问题情况为在8位数据后应答位显示?)

1、错误现象 错误现象如下&#xff0c;在IIC数据传输8位数据后&#xff0c;IIC DEBUG的应答位无法显示应答位 2、错误原因 我们打开信号传输的示波器&#xff0c;直接去查看IIC从机校验位的数据波形&#xff0c;可以看到从机示波器显示的的波形为半高ACK&#xff0c;那错误原…...

PHP判断闰年

闰年的规则 1.能被4整除且不能被100整除 &#xff08;普通闰年&#xff09; 2.能被400整除&#xff0c;公历年份是整百数的&#xff0c;必须是400的倍数才是闰年&#xff08;世纪闰年&#xff09; 代码 function isLeapYear($year) {if($year%40 && $year%100!0){r…...

证照之星XE专业版下载专业证件照制作工具

值得肯定的是智能背景替换功能&#xff0c;轻松解决背景处理这一世界难题。不得不提及的是新增打印字体设置&#xff0c;包含字体选择、字号大小、字体颜色等。不同领域的应用证明了万能制作&#xff0c;系统支持自定义证照规格&#xff0c;并预设了17种常用的证件照规格。人所…...

VR全景图片如何制作?揭秘VR全景图片制作全流程

引言&#xff1a; VR全景图片是一种以全景视角为基础的图片制作技术&#xff0c;能够呈现出更为真实、立体的视觉体验。通过VR全景图片&#xff0c;观众可以360环顾四周&#xff0c;仿佛身临其境&#xff0c;提供了一种全新的感官体验&#xff0c;那么如何制作出令人满意的全景…...

vue element el-table-column 循环示例代码

如果你想循环生成多个el-table-column&#xff0c;可以使用v-for指令。以下是一个示例&#xff1a; <template><el-table :data"tableData"><el-table-column v-for"column in columns" :key"column.prop" :label"column.l…...

R语言生物群落(生态)数据统计分析与绘图实践技术应用

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂&#xff0c;涉及众多统计分析方法。以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线&#xff0c;通过多个来自经典…...

有了 GPT,还需要付费咨询吗?

之前写过一篇文章《在创业公司&#xff0c;我靠它续命 …》&#xff0c;提到现在写代码基本靠 GPT。现在这种状况不仅没有改变&#xff0c;反而依赖更深。公司立项开发产品的 Linux 版本&#xff0c;全靠我一个人。我之前虽然一直使用 Linux 开发环境&#xff0c;对 Linux 系统…...

如何搭建一台服务器?

一.准备工作 1. 确定服务器类型&#xff1a;根据需求选择适合的服务器类型&#xff0c;如网站服务器、数据库服务器、文件服务器等。 2. 选择操作系统&#xff1a;根据服务器类型选择合适的操作系统&#xff0c;如Linux&#xff08;如Ubuntu、CentOS&#xff09;、Windows Se…...

[转载]C++序列化框架介绍和对比

Google Protocol Buffers Protocol buffers 是一种语言中立&#xff0c;平台无关&#xff0c;可扩展的序列化数据的格式&#xff0c;可用于通信协议&#xff0c;数据存储等。 Protocol buffers 在序列化数据方面&#xff0c;它是灵活的&#xff0c;高效的。相比于 XML 来说&…...

分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09; 目录 分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1…...

浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?

目录 背景 浮点数的不精确性 定点数的表示 浮点数的表示 小结 背景 在我们日常的程序开发中&#xff0c;不只会用到整数。更多情况下&#xff0c;我们用到的都是实数。比如&#xff0c;我们开发一个电商 App&#xff0c;商品的价格常常会是 9 块 9&#xff1b;再比如&…...

一文详解汽车电子LIN总线

0.摘要 汽车电子LIN总线不同于CAN总线。 LIN总线基本上是CAN总线的廉价补充&#xff0c;相比于CAN总线&#xff0c;它提供较低的可靠性和性能。同时LIN总线也是一个应用非常广泛的网络协议&#xff0c;并且越来越受欢迎。 再一次&#xff0c;我们准备了一个关于LIN总线的简要…...

论文阅读——GPT3

来自论文&#xff1a;Language Models are Few-Shot Learners Arxiv&#xff1a;https://arxiv.org/abs/2005.14165v2 记录下一些概念等。&#xff0c;没有太多细节。 预训练LM尽管任务无关&#xff0c;但是要达到好的效果仍然需要在特定数据集或任务上微调。因此需要消除这个…...

星环科技分布式向量数据库Transwarp Hippo正式发布,拓展大语言模型时间和空间维度

随着企业、机构中非结构化数据应用的日益增多以及AI的爆发式增长所带来的大量生成式数据&#xff0c;所涉及的数据呈现了体量大、格式和存储方式多样、处理速度要求高、潜在价值大等特点。但传统数据平台对这些数据的处理能力较为有限&#xff0c;如使用文件系统、多类不同数据…...

滚动条默认是隐藏的只有鼠标移上去才会显示

效果 在设置滚动条的类名中写 /* 滚动条样式 */.content-box::-webkit-scrollbar {width: 0px; /* 设置纵轴&#xff08;y轴&#xff09;轴滚动条 */height: 0px; /* 设置横轴&#xff08;x轴&#xff09;轴滚动条 */}/* 滚动条滑块&#xff08;里面小方块&#xff09; */.…...

Go学习第十五章——Gin参数绑定bind与验证器

Go web框架——Gin&#xff08;参数绑定bind与验证器&#xff09; 1 bind参数绑定1.1 JSON参数1.2 Query参数1.3 Uri绑定动态参数1.4 ShouldBind自动绑定 2 验证器2.1 常用验证器2.2 gin内置验证器2.3 自定义验证的错误信息2.4 自定义验证器 1 bind参数绑定 在Gin框架中&#…...

EtherCAT的4种寻址方式解析

我们知道&#xff0c;一个EtherCAT数据帧&#xff08;frame&#xff09;里面包含很多个报文&#xff08;datagram&#xff09;&#xff0c;不管是什么样式的报文&#xff0c;它们的目的只有一个&#xff0c;就是读写从站寄存器或内存。所以寻址就是以什么方式访问哪个从站的哪个…...

Trino 源码剖析

Functions function 反射和注册 io.trino.operator.scalar.annotations.ScalarFromAnnotationsParser 这里是提取注解元素的方法 String baseName scalarFunction.value().isEmpty() ? camelToSnake(annotatedName(annotated)) : scalarFunction.value(); 这里如果 scala…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...