Kafka - 3.x 消费者 生产经验不完全指北
文章目录
- 生产经验之Consumer事务
- 生产经验—数据积压(消费者如何提高吞吐量)

生产经验之Consumer事务
Kafka引入了消费者事务(Consumer Transactions)来确保在消息处理期间维护端到端的数据一致性。这使得消费者能够以事务的方式处理消息,包括从Kafka中读取消息、处理消息和提交消息的offset。以下是有关Kafka消费者事务的详细信息:
-
事务的引入:Kafka 0.11.0版本引入了消费者事务的功能。之前,Kafka的消费者通常使用手动提交offset的方式,但这种方式可能导致消息被重复消费或漏消费,特别是在处理消息和提交offset之间发生错误的情况下。
-
Consumer Transactions的目的:消费者事务的主要目的是确保消息被精确一次性地处理。这对于需要强一致性的应用程序非常重要,例如金融或电子商务领域。
-
核心概念:Kafka消费者事务依赖于以下核心概念:
- 事务ID:每个事务都有一个唯一的ID,用于跟踪和标识事务。
- 事务生命周期:一个事务有三个主要阶段:开始事务、处理消息、提交事务。
- 事务性消费:消费者在处理消息时将其包装在一个事务中,然后可以选择性地提交事务,以决定是否将offset提交到Kafka。
-
使用消费者事务:要使用消费者事务,消费者需要执行以下步骤:
- 开始事务:使用
beginTransaction()
方法开始一个新的事务。 - 处理消息:在事务内处理Kafka中的消息。
- 提交或中止事务:使用
commitTransaction()
提交事务或使用abortTransaction()
中止事务。如果事务被提交,那么offset也会被提交;如果事务被中止,offset不会被提交。
- 开始事务:使用
-
事务保证:Kafka消费者事务提供了以下保证:
- Exactly-Once Semantics:确保消息在事务内被处理一次,从而避免了重复消费和漏消费。
- 事务性处理:事务内的消息处理要么全部成功,要么全部失败,从而保持数据的一致性。
-
事务的限制:消费者事务也有一些限制,包括:
- 消费者必须使用新的Kafka协议版本(0.11.0.0及以上)。
- 事务涉及到资源的分配,可能会引入一些开销,因此需要根据具体的用例来评估是否使用。
总的来说,Kafka消费者事务提供了可靠的消息处理机制,可以确保消息被精确一次性地处理。这对于需要强一致性的应用程序非常有价值,但也需要在使用时谨慎考虑性能开销和兼容性问题。
生产经验—数据积压(消费者如何提高吞吐量)
提高Kafka消费者的吞吐量是许多应用程序的关键优化目标,特别是在需要处理大量数据的情况下。以下是一些方法,可以帮助你提高Kafka消费者的吞吐量:
-
并行处理:使用多个消费者实例并行处理消息。每个消费者实例可以运行在不同的线程或进程中,从不同的分区中读取消息。这可以有效地利用多核CPU和多台机器的资源。
-
增加分区数:如果Kafka Topic的吞吐量不足,可以考虑增加分区数。更多的分区可以提高并行性,允许更多的消费者同时处理消息。
-
适当调整消费者参数:调整消费者的参数以提高性能。例如,增加
max.poll.records
以一次获取更多的消息,或者适当增加fetch.max.bytes
以增加每次获取的数据量。 -
使用高性能消费者:一些Kafka客户端库提供了高性能的消费者实现,如Apache Kafka的Java客户端,它具有较低的延迟和更高的吞吐量。选择适当的消费者库对性能至关重要。
-
优化消息处理逻辑:消息处理逻辑应尽量简化和优化,以降低处理每条消息的时间。使用多线程或异步处理可以提高效率,但要注意线程安全和异常处理。
-
合理设置批量处理:在消息处理中,可以考虑批量处理消息,而不是逐条处理。这可以减少网络开销和提高处理效率。
-
使用合适的分区分配策略:选择适当的分区分配策略,以确保分区分配在不同的消费者之间均匀分布,以充分利用多个消费者实例的并行性。
-
使用消息压缩:在网络带宽受限的情况下,启用消息压缩可以减少数据传输的开销,提高吞吐量。
-
使用本地缓存:为消息处理逻辑引入本地缓存,以减少对外部资源(例如数据库)的访问次数。这可以减少延迟并提高吞吐量。
-
合理设置并监控资源:确保消费者实例拥有足够的CPU、内存和网络资源,并监控这些资源的使用情况,以及时发现和解决性能瓶颈。
-
分布式消费者组管理:如果你的应用需要高可用性和横向扩展,可以考虑使用分布式消费者组管理工具,如Apache Kafka Streams或其他流处理框架。
参数名称 | 描述 |
---|---|
fetch.max.bytes | 消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50MB),仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受message.max.bytes(broker配置)或max.message.bytes(主题配置)的影响。 |
max.poll.records | 一次poll 拉取数据返回消息的最大条数,默认是500条。 |
最终,提高Kafka消费者的吞吐量需要综合考虑多个因素,包括硬件资源、消费者配置、消息处理逻辑等。通过结合上述方法,你可以有效地提高消费者的性能和吞吐量。
相关文章:

Kafka - 3.x 消费者 生产经验不完全指北
文章目录 生产经验之Consumer事务生产经验—数据积压(消费者如何提高吞吐量) 生产经验之Consumer事务 Kafka引入了消费者事务(Consumer Transactions)来确保在消息处理期间维护端到端的数据一致性。这使得消费者能够以事务的方式…...

UDP网络编程的接受与发送信息
/发送端B>可以接受数据 public class UDPSenderB {public static void main(String[] args) throws IOException {//创建一个DatagramSocket 对象,准备发送和接受数据DatagramSocket socket new DatagramSocket(9998);//将需要发送的数据,封装到Data…...
RK3588开发笔记-USB3.0接口调试
目录 前言 一、资源介绍 二、硬件连接 三、设备树配置...

AI绘画|midjourney入门保姆教程,30秒出专业大片,国内直接使用
同学们,之前大家想用midjourney还需要魔法上网和很复杂的注册配置,现在微信里就能使用midjourney了, 还支持中文,大家赶紧来试试吧。 AI写稿专家 www.promptspower.comhttp://www.promptspower.com 我们还给大家提供了各个行业的…...

阿里发布AI编码助手:通义灵码,兼容 VS Code、IDEA等主流编程工具
今天是阿里云栖大会的第一天,相信场外的瓜,大家都吃过了。这里就不说了,有兴趣可以看看这里:云栖大会变成相亲现场,最新招婿鄙视链来了... 。 这里主要说说阿里还发布了一款AI编码助手,对于我们开发者来说…...

【Linux】-进程控制(深度理解写时拷贝、exit函数、return的含义以及makefile编译多个程序)-进程创建、进程终止、进程等待、进程程序替换
💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

【mfc/VS2022】计图实验:绘图工具设计知识笔记3
实现类对串行化的支持 如果要用CArchive类保存对象的话,那么这个对象的类必须支持串行化。一个可串行化的类通常有一个Serialize成员函数。要想使一个类可串行化,要经历以下5个步骤: 1、从CObject派生类 2、重写Serialize成员函数 3、使用DE…...

Leetcode—1488.避免洪水泛滥【中等】
2023每日刷题(十四) Leetcode—1488.避免洪水泛滥 算法思想 将晴天的日期全部记录在set<int> sun中使用unordered_map<int, int> lakeRainy来记录每个湖泊上一次下雨的日期遇到晴天时先不用管抽哪个湖当下雨时,湖泊已经装满水时…...

CSS与基本选择器
<div class"c1" id"d1"></div> CSS基本知识 什么是css:CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素。 当浏览器读到一个样式表,他就会按照这个样式l来进行渲染。其实就是让HT…...

回归算法|长短期记忆网络LSTM及其优化实现
本期文章将介绍LSTM的原理及其优化实现 序列数据有一个特点,即“没有曾经的过去则不存在当前的现状”,这类数据以时间为纽带,将无数个历史事件串联,构成了当前状态,这种时间构筑起来的事件前后依赖关系称其为时间依赖&…...

小米电视播放win10视频 win10共享问题
解决的方法就是安装SMB1.0协议 重启就OK了...
uniApp开发注意要点提炼-xyphf
我们在使用uniApp开发的时候,很多朋友由于对多端兼容性的不了解,结果在多端编译的时候经常出这样或者那样的问题,而不断的说uniApp这坑那坑的,下面我基于自身经验和官网说明提炼一些常见的注意要点。 因为很多公司时常初衷是开发一…...
DHorse改用fabric8的SDK与k8s集群交互
现状 在dhorse 1.4.0版本之前,一直使用k8s官方提供的sdk与k8s集群交互,官方sdk的Maven坐标如下: <dependency><groupId>io.kubernetes</groupId><artifactId>client-java</artifactId><version>18.0.0…...
如何在阿里云国际站服务器上添加IP白名单?
跟着云核算的发展,越来越多的企业和个人开始使用阿里云服务器。为了确保服务器的安全,咱们需要在阿里云服务器上增加IP白名单。这篇文章将具体解说如何在阿里云服务器上增加IP白名单。 增加IP白名单是保证服务器安全的重要手法之一。通过增加IP白名单&am…...
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-ChatGLM2模型的微调训练参数解读 目录 GPT实战系列-ChatGLM2模型的微调训练参数解读ChatGLM2模型1、P-Tuning模型微调2、微调训练配置参数train.sh中配置参数训练配置信息模型配置信息附录:训练正常运行打印信息 ChatGLM2模型 ChatGLM-6B是开源的文本生…...

RabbitMQ入门到实战教程,消息队列实战,改造配置MQ
RabbitMQ入门到实战教程,MQ消息中间件,消息队列实战-CSDN博客 3.7.Topic交换机 3.7.1.说明 Topic类型的Exchange与Direct相比,都是可以根据RoutingKey把消息路由到不同的队列。 只不过Topic类型Exchange可以让队列在绑定BindingKey 的时候…...

phar反序列化学习
PHP反序列化常见的是使用unserilize()进行反序列化,除此之外还有其它的反序列化方法,不需要用到unserilize()。就是用到phar反序列化。 Phar phar文件 Phar是将php文件打包而成的一种压缩文档,类似于Java中的jar包。它有一个特性就是phar文…...

十年回望 -- JAVA
十年 十年时间,弹指一挥,好像一直都是在为工作奔波,匆匆忙忙的十年。 一、个人介绍 本人毕业于一所很普通的公办专科院校(全日制统招大专),专业是软件技术,当初能进入计算机这一行业࿰…...

Linux 环境下 安装 Elasticsearch 7.13.2
Linux 环境下 安装 Elasticsearch 7.13.2 前言镜像下载(国内镜像地址)解压安装包修改配置文件用 Es 自带Jdk 运行配置 Es 可被远程访问然后启动接着启动本地测试一下能不能连 Es 前言 借公司的 centos 7 服务器,搭建一个 Es,正好熟…...

心理咨询预约小程序
随着微信小程序的日益普及,越来越多的人开始关注如何利用小程序来提供便捷的服务。对于心理咨询行业来说,搭建一个心理咨询预约小程序可以大大提高服务的效率和用户体验。本文以乔拓云平台为例,详细介绍如何轻松搭建一个心理咨询预约小程序。…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...