当前位置: 首页 > news >正文

【Acwing170】加成序列(dfs+迭代加深+剪枝)题解和一点感想

本思路来自acwing算法提高课

题目描述

看本文需要准备的知识

1.dfs算法基本思想

2.对剪枝这个词有个简单的认识

迭代加深思想和此题分析

首先,什么是迭代加深呢?当一个问题的解有很大概率出现在递归树很浅的层,但是这个问题的解本身存在着很深的层,当这个很浅的层的对应分支在搜索顺序比较靠后的位置时,我们就会先搜索前几个很深的层,导致浪费大量时间,迭代加深就是为了解决这个问题(如下图所示)而存在的

迭代加深具体思想非常简单,设置一个max_depth,每次搜索超过这个值直接return,如果搜完没搜到就逐步扩大max_depth

比如上面那个图,刚开始max_depth==1,对于左边那一堆,往下搜一个没搜到直接return,轮到第二个分支,往下搜一个,直接就找到答案了!如果答案在第二个分支的第二层,就会从最左边开始先往下搜两个没找到,就开始搜第二个分支往下看两个,就又找到了。

有人可能会问,这样反复搜之前搜过的部分,不会导致效率低吗?

举一个满二叉树的例子吧!

假设答案在第8层,在max_depth从1到8的过程中,会先搜索:

2^1+2^2+......+2^7<2^8

所以相对第8层而言,这个重复搜索不值一提

而对于这个题目,举一个例子:n=127时,可以是1,2,4,8,16,32,64,仅仅第7层就可以搜到,而如果按照正常搜索顺序去搜,举一个极端例子,可以这样:

1,2,填第三个时,可以填1+2=3,

1,2,3填第四个时,可以填1+3=4,

依次类推,甚至可以搜一百多层!!!相对于第7层而言,这做出了极大的优化!

最后我们可以发现,这有一种bfs的味道,感觉就像是迭代加深把dfs的优势和bfs做了融合一样

剪枝

本题可以做几个剪枝

1.优化搜索顺序,每层的搜索大的开始,这样分支数会减少

2.可行性剪枝,当某层上可能填入的数小于等于当前确定序列的最后一个数,或者大于n,那么就不选这个数

3.去掉冗余,比如1,2,3,4,该搜第五个数时,2+3=1+4所以如果1+4已经搜过就不用弄2+3了,故设立st数组,标记已经搜过的,下次再见时直接continue本次循环

本题感想

这道题目,对于st数组到底是每层初始化一次还是每棵递归树整体初始化一次这个问题,我思考了很长时间,虽然知道结果是前者,但始终找不到其中的原因,现在我想通了,找这个原因其实是没有必要的,而且是很难的,因为dfs层与层之间的调用会导致各种数组变量结果变化,我们寻找这种具体变化和影响是极其艰难的,所以我们需要做的事弄清st数组应该作用于什么地方就行了,本题st数组的目的就是仅仅为了排除二重循环的X[i]+X[j]相同的冗余问题,既然仅仅作用于二重循环,我们也仅仅需要在二重循环前面开一个st数组即可

代码

#include<iostream>
#include<cstring>
using namespace std;
const int N=110;
int path[N];
int n;
bool dfs(int u,int k)
{if(u==k)return path[u-1]==n;bool st[N];memset(st,0,sizeof st);for(int i=u-1;i>=0;i--){for(int j=i;j>=0;j--){int s=path[i]+path[j];if(s>n||s<=path[u-1]||st[s])continue;path[u]=s;st[s]=true;if(dfs(u+1,k))return true;}}return false;
}
int main()
{path[0]=1;while(cin>>n,n){int k=1;while(!dfs(1,k))k++;for(int i=0;i<k;i++)cout<<path[i]<<" ";cout<<endl;}return 0;
}

相关文章:

【Acwing170】加成序列(dfs+迭代加深+剪枝)题解和一点感想

本思路来自acwing算法提高课 题目描述 看本文需要准备的知识 1.dfs算法基本思想 2.对剪枝这个词有个简单的认识 迭代加深思想和此题分析 首先&#xff0c;什么是迭代加深呢&#xff1f;当一个问题的解有很大概率出现在递归树很浅的层&#xff0c;但是这个问题的解本身存在…...

Android开发知识学习——Kotlin进阶

文章目录 次级构造主构造器init 代码块构造属性data class相等性解构Elvis 操作符when 操作符operatorLambdainfix 函数嵌套函数注解使用处目标函数简化函数参数默认值扩展函数类型内联函数部分禁用用内联具体化的类型参数抽象属性委托属性委托类委托 Kotlin 标准函数课后题 次…...

iOS使用AVCaptureSession实现音视频采集

AVCaptureSession配置采集行为并协调从输入设备到采集输出的数据流。要执行实时音视频采集&#xff0c;需要实例化采集会话并添加适当的输入和输出。 AVCaptureSession&#xff1a;管理输入输出音视频流AVCaptureDevice&#xff1a;相机硬件的接口&#xff0c;用于控制硬件特性…...

springboot和flask整合nacos,使用openfeign实现服务调用,使用gateway实现网关的搭建(附带jwt续约的实现)

环境准备&#xff1a; 插件版本jdk21springboot 3.0.11 springcloud 2022.0.4 springcloudalibaba 2022.0.0.0 nacos2.2.3&#xff08;稳定版&#xff09;python3.8 nacos部署&#xff08;docker&#xff09; 先创建目录&#xff0c;分别创建config&#xff0c;logs&#xf…...

深入浅出排序算法之基数排序

目录 1. 前言 1.1 什么是基数排序⭐⭐⭐ 1.2 执行流程⭐⭐⭐⭐⭐ 2. 代码实现⭐⭐⭐ 3. 性能分析⭐⭐ 3.1 时间复杂度 3.2 空间复杂度 1. 前言 一个算法&#xff0c;只有理解算法的思路才是真正地认识该算法&#xff0c;不能单纯记住某个算法的实现代码&#xff01; 1.…...

CSS选择器、CSS属性相关

CSS选择器 CSS属性选择器 通过标签的属性来查找标签&#xff0c;标签都有属性 <div class"c1" id"d1"></div>id值和class值是每个标签都自带的属性&#xff0c;还有另外一种&#xff1a;自定义属性 <div class"c1" id"d1&…...

设计模式(21)中介者模式

一、介绍&#xff1a; 1、定义&#xff1a;中介者模式&#xff08;Mediator Pattern&#xff09;是一种行为型设计模式&#xff0c;它通过引入一个中介者对象来降低多个对象之间的耦合度。在中介者模式中&#xff0c;各个对象之间不直接进行通信&#xff0c;而是通过中介者对象…...

JVM虚拟机:通过一个例子解释JVM中栈结构的使用

代码 代码解析 main方法执行&#xff0c;创建栈帧并压栈。 int d8&#xff0c;d为局部变量&#xff0c;是基础类型&#xff0c;它位于虚拟机栈的局部变量表中 然后创建了一个TestDemo的对象&#xff0c;这个对象在堆中&#xff0c;并且这个对象的成员变量&#xff08;day&am…...

会自动写代码的AI大模型来了!阿里云推出智能编码助手通义灵码

用大模型写代码是什么样的体验&#xff1f;10月31日&#xff0c;杭州云栖大会上&#xff0c;阿里云对外展示了一款可自动编写代码的 AI 助手&#xff0c;在编码软件的对话窗口输入“帮我用 python 写一个飞机游戏”&#xff0c;短短几秒&#xff0c;这款名为“通义灵码”的 AI …...

如何公网远程访问本地WebSocket服务端

本地websocket服务端暴露至公网访问【cpolar内网穿透】 文章目录 本地websocket服务端暴露至公网访问【cpolar内网穿透】1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功…...

python 练习 在列表元素中合适的位置插入 输入值

目的&#xff1a; 有一列从小到大排好的数字元素列表&#xff0c; 现在想往其插入一个值&#xff0c;要求&#xff1a; 大于右边数字小于左边数字 列表元素&#xff1a; [1,4,6,13,16,19,28,40,100] # 方法&#xff1a; 往列表中添加一个数值&#xff0c;其目的方便元素位置往后…...

企业级JAVA、数据库等编程规范之命名风格 —— 超详细准确无误

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信你对这两篇博客也感兴趣o (ˉ▽ˉ&#xff1b;) &#x1f4dc; 表白墙/留言墙 —— 初级SpringBoot项目&#xff0c;练手项目前后端开发(带完整源码) 全方位全步骤手把手教学 &#x1f4dc; 用户登录前后端…...

有什么可以自动保存微信收到的图片和视频的方法么

8-1 在一些有外勤工作的公司里&#xff0c;经常会需要在外面工作的同事把工作情况的图片发到指定微信或者指定的微信群里&#xff0c;以记录工作进展等&#xff0c;或者打卡等&#xff0c;对于外勤人员来说&#xff0c;也就发个图片的事&#xff0c;但是对于在公司里收图片的人…...

面试算法46:二叉树的右侧视图

题目 给定一棵二叉树&#xff0c;如果站在该二叉树的右侧&#xff0c;那么从上到下看到的节点构成二叉树的右侧视图。例如&#xff0c;图7.6中二叉树的右侧视图包含节点8、节点10和节点7。请写一个函数返回二叉树的右侧视图节点的值。 分析 既然这个题目和二叉树的层相关&a…...

vite配置terser,压缩代码及丢弃console

...

R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 既往咱们…...

WOS与CNKI数据库的citespace分析教程及常见问题解决

本教程为面向新手的基于citespace的数据可视化教程&#xff0c;旨在帮助大家更快了解行业前沿的研究内容。 获取最新版本的citespace软件 在citespace官网下载最新的版本&#xff08;如果是老版本&#xff0c;可能会提示让你去官网更新为最新版&#xff0c;老版本不再提供服务…...

NEFU数字图像处理(三)图像分割

一、图像分割的基本概念 1.1专有名词 前景和背景 在图像分割中&#xff0c;我们通常需要将图像分为前景和背景两个部分。前景是指图像中我们感兴趣、要分割出来的部分&#xff0c;背景是指和前景不相关的部分。例如&#xff0c;对于一张人物照片&#xff0c;人物就是前景&…...

UEditorPlus v3.6.0 图标补全,精简代码,快捷操作重构,问题修复

UEditor是由百度开发的所见即所得的开源富文本编辑器&#xff0c;基于MIT开源协议&#xff0c;该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器&#xff0c;主要做了样式的定制&#xff0c;更符…...

C++ Set

定义 set不同于vector,strin,list这种存储容器&#xff0c;set是一种关联式容器&#xff0c;底层是搜二叉&#xff1b; 功能 set可以确定唯一的值&#xff0c;可以排序去重。 接口 insert() #include <iostream> #include<set> using namespace std;int main…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...