transformers-Generation with LLMs
https://huggingface.co/docs/transformers/main/en/llm_tutorial
https://huggingface.co/docs/transformers/main/en/llm_tutorial停止条件是由模型决定的,模型应该能够学习何时输出一个序列结束(EOS)标记。如果不是这种情况,则在达到某个预定义的最大长度时停止生成。
from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
)
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A list of colors: red, blue, green, yellow, orange, purple, pink,'
tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
model_inputs = tokenizer(["A list of colors: red, blue", "Portugal is"], return_tensors="pt", padding=True
).to("cuda")
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['A list of colors: red, blue, green, yellow, orange, purple, pink,',
'Portugal is a country in southwestern Europe, on the Iber']
生成策略有很多,
生成结果太短或太长
如果在GenerationConfig文件中未指定,则默认情况下generate返回最多20个标记。建议在generate调用中手动设置max_new_tokens来控制它可以返回的最大新标记数。请注意,LLM(更精确地说是仅解码器模型)还将输入提示作为输出的一部分返回。
model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")# By default, the output will contain up to 20 tokens
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5'# Setting `max_new_tokens` allows you to control the maximum length
generated_ids = model.generate(**model_inputs, max_new_tokens=50)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
生成模式不正确
默认情况下,generate在每次迭代中选择最可能的标记(greedy decoding),除非在GenerationConfig文件中指定。
# Set seed or reproducibility -- you don't need this unless you want full reproducibility
from transformers import set_seed
set_seed(42)model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")# LLM + greedy decoding = repetitive, boring output
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. I am a cat. I am a cat. I am a cat'# With sampling, the output becomes more creative!
generated_ids = model.generate(**model_inputs, do_sample=True)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. Specifically, I am an indoor-only cat. I'
边缘填充错误
LLM是仅解码器架构,这意味着它们会继续对输入提示进行迭代。如果您的输入长度不相同,那么它们需要被填充。由于LLM没有被训练以从填充标记继续生成,因此输入需要进行左填充。确保还记得将注意力掩码传递给generate函数!
# The tokenizer initialized above has right-padding active by default: the 1st sequence,
# which is shorter, has padding on the right side. Generation fails to capture the logic.
model_inputs = tokenizer(["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
).to("cuda")
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 33333333333'# With left-padding, it works as expected!
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
model_inputs = tokenizer(["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
).to("cuda")
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 3, 4, 5, 6,'
错误的prompt
一些模型和任务需要特定的输入提示格式才能正常工作。如果未使用该格式,性能可能会出现悄然下降:模型可以运行,但效果不如按照预期的提示进行操作。
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
)
set_seed(0)
prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
input_length = model_inputs.input_ids.shape[1]
generated_ids = model.generate(**model_inputs, max_new_tokens=20)
print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
"I'm not a thug, but i can tell you that a human cannot eat"
# Oh no, it did not follow our instruction to reply as a thug! Let's see what happens when we write
# a better prompt and use the right template for this model (through `tokenizer.apply_chat_template`)set_seed(0)
messages = [{"role": "system","content": "You are a friendly chatbot who always responds in the style of a thug",},{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
model_inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
input_length = model_inputs.shape[1]
generated_ids = model.generate(model_inputs, do_sample=True, max_new_tokens=20)
print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
'None, you thug. How bout you try to focus on more useful questions?'
# As we can see, it followed a proper thug style 😎
相关文章:
transformers-Generation with LLMs
https://huggingface.co/docs/transformers/main/en/llm_tutorialhttps://huggingface.co/docs/transformers/main/en/llm_tutorial停止条件是由模型决定的,模型应该能够学习何时输出一个序列结束(EOS)标记。如果不是这种情况,则在…...
maven之父子工程版本控制案例实战,及拓展groupId和artifactId的含义
<parent>标签 用于父子工程项目,什么是父子工程? 顾名思义,maven父子项目是一个有一个父项目,父项目下面又有很多子项目的maven工程,当然,子项目下面还可以添加子项目,从而形成一个树形…...
100量子比特启动实用化算力标准!玻色量子重磅发布相干光量子计算机
2023年5月16日,北京玻色量子科技有限公司(以下简称“玻色量子”)在北京正大中心成功召开了2023年首场新品发布会,重磅发布了自研100量子比特相干光量子计算机——“天工量子大脑”。 就在3个月前,因“天工量子大脑”在…...
JAVA基础(JAVA SE)学习笔记(十)多线程
前言 1. 学习视频: 尚硅谷Java零基础全套视频教程(宋红康2023版,java入门自学必备)_哔哩哔哩_bilibili 2023最新Java学习路线 - 哔哩哔哩 第三阶段:Java高级应用 9.异常处理 10.多线程 11.常用类和基础API 12.集合框架 13.泛型 14…...
ChatGPT参数只有200亿?扩散代码模型,意外泄露
微软的研究部门发布了一篇关于预训练扩散代码模型CodeFusion的论文。在展示代码生成任务的基线数据对比时,发现了一个有趣的事情,ChatGPT(gpt-3.5-turbo)的参数只有200亿。 要知道,gpt-3.5-turbo是OpenAI中应用最多、…...
VR虚拟仿真教学在建筑学课堂中的应用
1. 增强真实感:VR技术能创造出近乎真实的虚拟环境,使学生仿佛置身其中,增强他们的感官体验。 2. 打破空间限制:VR教学可以打破时间和空间的限制,学生可以在任何时间、任何地点进行学习,无需担心课堂位置的…...
竞赛 深度学习实现行人重识别 - python opencv yolo Reid
文章目录 0 前言1 课题背景2 效果展示3 行人检测4 行人重识别5 其他工具6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的行人重识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,…...
当代都市的时尚先锋:气膜建筑的魅力
当代城市的崛起如一部快速奔腾的时光流。在这个光速发展的都市中,时间被看作珍贵的黄金,而效率被视为无价的生命。而在这个节奏日益加快的现代都市背后,一个独特的“神器”——气膜建筑,悄然崭露头角,成为城市发展的领…...
品牌加盟商做信息展示预约小程序的效果如何
很多行业都有中部或头部品牌,对实体品牌企业来说想要快速高效发展,除了多地直营店外还需要招募加盟商进而提升生意营收。 因此线上渠道变得尤为重要,除了网站外,小程序是连接多平台生态很好的工具,随时打开、直接触达…...
delphi 11.3 FastReport 多设备跨平台 打印之解决方法
以下能WINDOWS10 DELPHI 11.3 FastReport6.0上顺利通过 FastReport6.2对Multi-Device Application应用的支持不够友好,如下图;在palette FastReport6.0才出现几个制件。 非Multi-Device Application应用时是一大堆; 非Multi-Device Appl…...
配置vue 环境
一、安装Node.js及配置环境 环境变量配置 第一步:“此电脑”-右键-“属性”-“高级系统设置”-“高级”-“环境变量” 第二步(我的为:C:\Program Files\nodejs ),然后编辑path,新建,为…...
Visio文件编辑查看工具Visio Viewer for Mac
Visio Viewer mac版是一款Visio文件查看工具,可以使用本程序打开所有的visio文件数据,支持多种语言环境,可以对visio文件进行编辑、跳转参数等设置。 Visio Viewer for Mac可以打开和查看Visio文件(.vsd、.vdx和.vsdm文件&#x…...
现在软文发布平台都有哪些?如何在正规媒体发稿?
近年来,随着广告行业竞争愈加激烈,越来越多的企业开始注重软文宣传。软文推广平台是企业在网络上发布软文、传播信息和推广产品的重要工具。 媒介易软文平台介绍更好的品牌宣传和市场推广:软文推广发稿有哪些平台, 软文发稿好方法?软文不仅能…...
【卷积神经网络】YOLO 算法原理
在计算机视觉领域中,目标检测(Object Detection)是一个具有挑战性且重要的新兴研究方向。目标检测不仅要预测图片中是否包含待检测的目标,还需要在图片中指出它们的位置。2015 年,Joseph Redmon, Santosh Divvala 等人…...
云计算与ai人工智能对高防cdn的发展
高防CDN(Content Delivery Network)作为网络安全领域的一项关键技术,致力于保护在线内容免受各种网络攻击,包括分布式拒绝服务攻击(DDoS)等。然而,随着人工智能(AI)和大数…...
Web3时代:探索DAO的未来之路
Web3 的兴起不仅代表着技术进步,更是对人类协作、创新和价值塑造方式的一次重大思考。在 Web3 时代,社区不再仅仅是共同兴趣的聚集点,而变成了一个价值交流和创新的平台。 去中心化:超越技术的革命 去中心化不仅仅是 Web3 的技术…...
odbcinst文件
odbcinst文件是ODBC(Open Database Connectivity)驱动程序管理器的配置文件。ODBC是一种标准的数据库访问接口,允许应用程序通过统一的方式连接和访问不同类型的数据库。 odbcinst文件通常位于操作系统的特定目录中,并且用于定义…...
(CQUPT 的某数据结构homework)
CQUPT 的某数据结构homework 基于线性表的图书信息管理基于栈的算术表达式求值基于字符串模式匹配算法的病毒感染检测问题 基于哈夫曼树的数据压缩算法基于二叉树的表达式求值算法基于 Dijsktra 算法的最短路基于广度优先搜索的六度空间排序算法的实现与分析 基于线性表的图书信…...
Android页面周期、页面跳转
1.什么是Activity? Activity是Android的四大组件之一,它是一种可以包含用户界面的组件,主要用于和用户进行交互。Activity用于显示用户界面,用户通过Activity交互完成相关操作,一个APP允许有多个Activity。 2.Activi…...
腾讯云轻量应用镜像、系统镜像、Docker基础镜像、自定义镜像和共享镜像介绍
腾讯云轻量应用服务器镜像类型分为应用镜像、系统镜像、Docker基础镜像、自定义镜像和共享镜像,腾讯云百科txybk.com来详细说下不同镜像类型说明和详细介绍: 轻量应用服务器镜像类型说明 腾讯云轻量应用服务器 应用镜像:独有的应用镜像除了包…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
