拥抱AI-ChatGPT:人类新纪元
最近大模型通用智能应用持续发酵,各大科技公司都陆续推出了基于通用大模型的智能应用产品,典型的如OpenAI的ChatGPT、微软的BingChat、百度的文心一言、360的智脑、阿里的通义千问等。当然最火的要属于ChatGPT了,从去年年底推出到现在已经有很多人体验了,并惊叹于如今的人工智能已经发展到无所不知、无所不能的程度了。
经过一段时间对ChatGPT的使用,我逐渐认同马占凯马老师《ChatGPT:人类新纪元》书中对“ChatGPT:人类新纪元”的提法。ChatGPT,如同人类历史上的单向门——火、文字、造纸、蒸汽机、电和计算机一样,ChatGPT的横空出世让大家看到了通用人工智能达到了崭新新的高度,标志着人类科技进步的又一重大里程碑,预示着我们正步入通用人工智能的新纪元。就像2007年乔布斯发布划时代的苹果智能手机iphone后,各种互联网移动应用蜂拥而至,大家再也离不开智能手机了,从此开始了移动互联的新纪元。
一、ChatGPT之初体验
对于一个码农,初接触ChatGPT时就想验证一下ChatGPT的编程功底,最近正好在研究用机器学习来识别心电图。如是问了一下ChatGPT如何用Python写一段心电图识别波形的代码。
看一下ChatGPT给我的答案:
关键是这段代码稍作调整就可以运行起来。
看上去效果还不错!
这可不是向搜素引擎一样搜出一堆的结果给出一堆的选项让我来选,而是真正的根据我的题意自己生成了一段可以执行的代码!这就有点牛逼了。
原来一直以为码农毕竟还是干技术活的,不会像那些从事简单重复劳动的活一样被AI所替代。但是看到ChatGPT给我的答案,又更进一步的加深了我的焦虑。本来就很卷的IT行业,还要和通用人工智能卷,估计用不了多久码农这个职业就会要消失了。
二、ChatGPT与搜索引擎
有人认为ChatGPT就是搜索引擎的升级版,输入一些信息机器就给你反馈一些经过精细过滤后的信息。ChatGPT与搜索引擎完全是两类不同的东西。差别就和智能手机与以前的功能手机一样大。
ChatGPT是通过海量的数据学习后,具备真正具有智能能力的,给出的内容是根据自身的学习自动生成的。也就是我们常说的生成式AI,是一种能够从其训练数据中学习并生成新的、类似的数据或模型的机器学习技术。这种方法不依赖于预先定义的规则或模式,而是通过自我学习和适应来改进其性能。
与传统的AI相比,生成式AI的主要区别在于其学习方式和能力。传统的AI通常依赖于专家知识或编程指令来执行特定的任务。例如,一个图像识别系统可能被训练成只识别特定的图像类型,如猫或狗。然而,一旦这个系统遇到它从未见过的图像,它就无法做出正确的判断。
相反,生成式AI可以通过自我学习和适应来提高其性能。即使它从未见过某种类型的数据,它也可以通过分析大量的类似数据来学习如何处理这种数据。例如,ChatGPT通过海量的数据学习可以自动生成给出符合题意的答案。
而搜索引擎甚至连传统的AI都算不上,只是通过大数据的搜索算法将符合搜索条件的信息查询后返回到你,你还要根据自己的判断去识别和删选有用的信息。尤其是有了竞价模型后,可能搜索引擎给你的数据排名前几的都是对你来说没有什么用的,只是出价高的几个。
三、机器学习与人类学习
机器学习其实是和人类学习是一样的。基本原理如下图所示:
机器学习的输入是海量的数据,通过模型的训练从数据中学习,生成并输出新的数据,根据输出的效果的进行评估和反馈来调整模型参数使模型的学习效果达到最优。
人类学习也是一样的,平时我们努力大量的看书、看视频、看其他资料、与人交流,其实都是在获取信息,将信息输入至大脑后,大脑经过思考输出结果,结果是对世界的认知、对人生的看法、对专业知识的领悟、输出一篇论文、输出一次演讲等等。也是对自己输出的结果进行评估和反馈来强化学习效果。
比如:学生通过大量的阅读和做题作为输入来学习知识,通过考试来评估学习效果,根据考试评估的结果来调整自己的学习方法策略来取得更好的学习成绩。
我们也是一样的,要想提高自己的认知和能力,就要通过大量的阅读(输入)、思考(学习)、不断的反思(反馈评估)、不断的思考调整学习方法策略等(优化模型参数),最终提高自身的能力,可以有高水平的认知输出(输出)。
四、智能涌现与从量变到质变
“智能涌现” 是一个涵盖广泛领域的概念,它描述了在复杂系统中,智能行为或性能如何从简单组件或个体之间的互动中产生或 “涌现” 出来。在机器学习中,神经网络和深度学习模型可以通过大量的神经元之间的互连来实现智能任务。
在ChatGPT惊人的智能表现背后,就发生了智能涌现的现象。涌现现象是极为复杂的,因为复杂性科学就是复杂的,复杂是其基本特征。通俗的将就是当数据和模型参数达到一定的数量级后模型涌现出了新的完成任务的能力。
目前,在大模型的智能涌现方面,有三个结论。
第一,我们不知道什么时候会涌现某种新能力;
第二,我们不知道到一定规模时会涌现哪一种新的能力。
第三,我们唯一知道的是,只要数据量足够大,训练得足够深,一定会有涌现发生。
于是,我不禁又要拿出这张图:
这张图可以理解为从量变到质变的过程。在人类学习的过程中,学任何东西,如:学习英语,只要输入足够多通过大量的听说读写(数据量足够大),投入的时间精力够多(训练得足够深),一定会有拐点(涌现)发生,一定会成功,就像顿悟后开了挂一样。
既然基于大模型的通用人工智能不可避免的来了,就让我们一起拥抱吧!
作者博客:http://xiejava.ishareread.com/
相关文章:

拥抱AI-ChatGPT:人类新纪元
最近大模型通用智能应用持续发酵,各大科技公司都陆续推出了基于通用大模型的智能应用产品,典型的如OpenAI的ChatGPT、微软的BingChat、百度的文心一言、360的智脑、阿里的通义千问等。当然最火的要属于ChatGPT了,从去年年底推出到现在已经有很…...

基于深度学习的人脸表情识别 计算机竞赛
文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较…...

GitHub经常打不开或者访问解决办法
访问慢或无法访问的原因:DNS解析是最为基础的一个环节。由于Github的服务器在全球各地,域名解析所需的时间也会不同,这就导致了在特定地区可能会出现Github无法正常访问的情况。 解决:查询到github对应的IP,然后在host…...

密码学 - SHA-2
实验八 SHA-2 1.实验目的 熟悉SHA – 2算法的运行过程,能够使用C语言编写实现SHA-2算法程序,增加对摘要函数的理解。 2、实验任务 (1)理解SHA-2轮函数的定义和常量的定义。 (2)利用VC语言实现SHA-2算…...
Vins-Fusion、Vins-Mono(之前那个编译通过但是没有这个好用)
ROS的catkin_make不要修改,暂时没有理由,理由就是两次一个改了一个没改,没改的成功了以成功为准。 另外docker也没用成功,原本的逻辑来说,docker肯定不能出问题的,但是由于roscore通信的原因可能没有将结果显示&#x…...

每日自动化提交git
目前这个功能,有个前提: 这个git代码仓库,是一个人负责,所以不存在冲突问题 我这个仓库地址下载后的本地路径是:D:\Projects\Tasks 然后我在另外一个地方新建了一个bat文件: bat文件所在目录为:…...

【Linux进程】再谈软件—操作系统(Operator System)
目录 操作系统(Operator System) 概念 设计OS的目的 如何理解 "管理"——先描述再组织 系统调用和库函数概念 总结 操作系统(Operator System) 概念 任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。 笼统的理解,操作系统…...

创建超过1G内存大小的程序
正常情况一个进程最大占用内存为1G一下,如果程序有需求要使用超过1G大小的程序,可进行如下操作 VS修改设置:属性--->链接器--->系统--->启用大地址 【选择是】 测试申请堆内存代码 #include <stdlib.h> #include <stdio…...

如何本地部署Jellyfin影音服务器并实现在公网访问
文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及,各种各样的使用需求也被开发出来&…...
docker fixuid
docker fixuid 一、fixuid是什么二、使用场景三、问题dockerfiledocker run 一、fixuid是什么 fixuid是用go语言编写的,当容器起来后可以修改容器中非root用户的UID/GID和文件权限。 项目地址:https://github.com/boxboat/fixuid 二、使用场景 当容器…...

MySQL笔记--SQL语句
目录 1--SQL的通用语法 2--SQL语句的分类 3--DDL语句 3-1--数据库操作 3-2--表操作 3-3--数据类型 3-4--修改和删除 4--DML语句 4-1--插入数据 4-2--修改数据 4-3--删除数据 5--DQL语句 5-1--基本查询 5-2--条件查询 5-3--聚合函数 5-4--分组查询 5-5--排序查…...

线扫相机DALSA-相机平场矫正详细步骤
在相机视野下铺放白色亚克力板或纯白纸,采集图像。打开曲线图。 选择 Line Profile 模式。调节好相应所需的曝光时间、光源、增益和镜头光圈,让白平衡纸显示出来的灰度值大概在 150-200 左右。 在Calibration Algorithm 中将显示的数值设置好。 先暗场…...

求购供应发布农业副业产品市场行情小程序开发
农业副业产品求购供应发布市场行情小程序H5开源版开发 后台同步:一键获取全国近200家农产品批发市场的商品价格,包括蔬菜、水果、水产、粮油和农副产品等。 实时更新和同步市场价格动态,保障信息的准确性和时效性。 前端VIP权益功能&…...

框架安全-CVE 复现SpringStrutsLaravelThinkPHP漏洞复现
目录 服务攻防-框架安全&CVE 复现&Spring&Struts&Laravel&ThinkPHP概述PHP-开发框架安全-Thinkphp&Laravel漏洞复现Thinkphp-3.X RCEThinkphp-5.X RCELaravel框架安全问题- CVE-2021-3129 RCE JAVAWEB-开发框架安全-Spring&Struts2Struts2框架安全…...

【腾讯云 HAI域探秘】宝妈也能快速入门AI绘画
活动背景 本次活动是由腾讯云和CSDN联合推出的开发者技术实践活动。我通过技术交流直播、动手实验、征文等形式,深入沉浸式体验腾讯云高性能应用服务 HAI。从活动中汲取到技术上的精华。在本次活动中,只要完成各个环节任务,不仅可以参与 AIGC…...
归并排序,自顶向下
归并排序主要两步,一步是划分区间,另一步是合并两个区间 这个算法的稳定性更好,对比快排这种,如果整体是倒序的话,快排的复杂度会达到o(n^2),归并会更稳定。 划分区间主要是递归去实现,下面给…...

【案例】3D地球(vue+three.js)
需要下载插件 <template><div class"demo"><div id"container" ref"content"></div></div> </template> <script> import * as THREE from three; // import mapJSON from ../map.json; import { Or…...
C语言中float byte char uint_8 转换方法
1.float转Byte[] #include <stdio.h>int main() {float floatValue 3.141592; // 浮点数值// 存储到字节数组unsigned char *byteArr (unsigned char *)&floatValue;// 打印字节数组for (int i 0; i < sizeof(float); i) {printf("Byte %d: 0x%02X\n&q…...

瑞明达:脚踏实地,为实体经济贡献“瑞明达”力量
实体经济是指以实际物质生产和经营为主要特征的经济形态,是经济发展的基础和主体。瑞明达团队一直关注着实体经济的发展,也在不断探索如何运用科技手段和管理经验助力实体经济的发展。团队将从几个方面介绍瑞明达团队的看法和实践经验。 实体经济在国家经…...
ChatGPT-自然语言处理模型
前言 GPT(Generative Pre-trained Transformer)是一种自然语言处理模型,具有强大的文本生成和理解能力。 使用场景 它可以用于各种场景,包括但不限于: 1. 自动文本生成:GPT可以生成连贯、流畅的文章、故…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...