当前位置: 首页 > news >正文

【机器学习】五、贝叶斯分类

我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。

条件概率是朴素贝叶斯模型的基础

假设,你的xx公司正在面临着用户流失的压力。虽然,你能计算用户整体流失的概率(流失用户数/用户总数)。但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济。你非常想根据用户的某种行为,精确地估计一个用户流失的概率,若这个概率超过某个阀值,再触发用户挽留机制。这样能把钱花到最需要花的地方。

你搜遍脑子里的数据分析方法,终于,一个250年前的人名在脑中闪现。就是“贝叶斯Bayes”。你取得了近一个月的流失用户数、流失用户中未读消息大于5条的人数、近一个月的活跃用户数及活跃用户中未读消息大于5条的人数。在此基础上,你获得了一个“一旦用户未读消息大于5条,他流失的概率高达%”的精确结论。怎么实现这个计算呢?先别着急,为了解释清楚贝叶斯模型,我们先定义一些名词。

  • 概率(Probability)——0和1之间的一个数字,表示一个特定结果发生的可能性。比如投资硬币,“正面朝上”这个特定结果发生的可能性为0.5,这个0.5就是概率。换一种说法,计算样本数据中出现该结果次数的百分比。即你投一百次硬币,正面朝上的次数基本上是50次。

  • 几率(Odds)——某一特定结果发生与不发生的概率比。如果你明天电梯上遇上你暗恋的女孩的概率是0.1,那么遇不上她的概率就是0.9,那么遇上暗恋女孩的几率就是1/9,几率的取值范围是0到无穷大。

  • 似然(Likelihood)——两个相关的条件概率之比,即给定B发生的情况下,某一特定结果A发生的概率和给定B不发生的情况下A发生的概率之比。另一种表达方式是,给定B的情况下A发生的几率和A的整体几率之比。两个计算方式是等价的。

Clipboard Image.png

因为上面在似然当中提到了条件概率,那么我们有必要将什么是条件概率做更详尽的阐述。

如上面的韦恩图,我们用矩形表示一个样本空间,代表随机事件发生的一切可能结果。的在统计学中,我们用符号P表示概率,A事件发生的概率表示为P(A)。两个事件间的概率表达实际上相当繁琐,我们只介绍本书中用得着的关系:

  1. A事件与B事件同时发生的概率表示为P(A∩B),或简写为P(AB)即两个圆圈重叠的部分。

  2. A不发生的概率为1-P(A),写为P(~A),即矩形中除了圆圈A以外的其他部分。

  3. A或者B至少有一个发生的概率表示为P(A∪B),即圆圈A与圆圈B共同覆盖的区域。

  4. 在B事件发生的基础上发生A的概率表示为P(A|B),这便是我们前文所提到的条件概率,图形上它有AB重合的面积比上B的面积。

回到我们的例子。以P(A)代表用户流失的概率,P(B)代表用户有5条以上未读信息的概率,P(B|A)代表用户流失的前提下未读信息大于5条的概率。我们要求未读信息大于5条的用户流失的概率,即P(A|B),贝叶斯公式告诉我们: 

P(A|B)=P(AB)/P(B)

              =P(B|A)*P(A)/P(B)

从公式中可知,如果要计算B条件下A发生的概率,只需要计算出后面等式的三个部分,B事件的概率(P(B)),是B的先验概率、A属于某类的概率(P(A)),是A的先验概率、以及已知A的某个分类下,事件B的概率(P(B|A)),是后验概率

如果要确定某个样本归属于哪一类,则需要计算出归属不同类的概率,再从中挑选出最大的概率

我们把上面的贝叶斯公式写出这样,也许你能更好的理解:

MAX(P(Ai|B))=MAX(P(B|Ai)*P(Ai)/P(B))

而这个公式告诉我们,需要计算最大的后验概率,只需要计算出分子的最大值即可,而不同水平的概率P(C)非常容易获得,故难点就在于P(X|C)的概率计算。而问题的解决,正是聪明之处,即贝叶斯假设变量X间是条件独立的,故而P(X|C)的概率就可以计算为:

P(B|Ai) =P(B1/Ai)*P(B2/Ai)*P(B3/Ai)*.....*P(Bn/Ai) 

如下图,由这个公式我们就能轻松计算出,在观察到某用户的未读信息大于5条时,他流失的概率为80%。80%的数值比原来的30%真是靠谱太多了。

Clipboard Image.png

当然,现实情况并不会像这个例子这么理想化。大家会问,凭什么你就会想到用“未读消息大于5条”来作为条件概率?我只能说,现实情况中,你可能要找上一堆觉得能够凸显用户流失的行为,然后一一做贝叶斯规则,来测算他们是否能显著识别用户流失。寻找这个字段的效率,取决于你对业务的理解程度和直觉的敏锐性。另外,你还需要定义“流失”和“活跃”,还需要定义贝叶斯规则计算的基础样本,这决定了结果的精度。

  • 利用全概率公式的一个例子

朴素贝叶斯的应用不止于此,我们再例举一个更复杂,但现实场景也更实际的案例。假设你为了肃清电商平台上的恶性商户(刷单、非法交易、恶性竞争等),委托算法团队开发了一个识别商家是否是恶性商户的模型M1。为什么要开发模型呢?因为之前识别恶性商家,你只能通过用户举报和人肉识别异常数据的方式,人力成本高且速率很慢。你指望有智能的算法来提高效率。

之前监察团队的成果告诉我们,目前平台上的恶性商户比率为0.2%,记为P(E),那么P(~E)就是99.8%。利用模型M1进行检测,你发现在监察团队已判定的恶性商户中,由模型M1所判定为阳性(恶性商户)的人数占比为90%,这是一个条件概率,表示为P(P|E)=90%;在监察团队判定为健康商户群体中,由模型M1判定为阳性的人数占比为8%,表示为P(P|~E)=8%。乍看之下,你是不是觉得这个模型的准确度不够呢?感觉对商户有8%的误杀,还有10%的漏判。其实不然,这个模型的结果不是你想当然的这么使用的 

这里,我们需要使用一个称为“全概率公式”的计算模型,来计算出在M1判别某个商户为恶性商户时,这个结果的可信度有多高。这正是贝叶斯模型的核心。当M1判别某个商户为恶性商户时,这个商户的确是恶性商户的概率由P(E|P)表示:

P(E|P)

=P(P|E)*P(E) (P(E)*P(P|E)+P(~E)*P(P|~E)) 

上面就是全概率公式。要知道判别为恶性商户的前提下,该商户实际为恶性商户的概率,需要由先前的恶性商户比率P(E),以判别的恶性商户中的结果为阳性的商户比率P(P|E),以判别为健康商户中的结果为阳性的比率P(P|~E),以判别商户中健康商户的比率P(~E)来共同决定。

P(E)     0.2%
P(P|E)  90%
P(~E)   99.8%
P(P|~E)  8%
P(E|P)= P(P|E)*P(E) / (P(E)*P(P|E)+P(~E)*P(P|~E))  2.2%

由上面的数字,带入全概率公式后,我们获得的结果为2.2%。也就是说,根据M1的判别为阳性的结果,某个商户实际为恶性商户的概率为2.2%,是不进行判别的0.2%的11倍。

你可能认为2.2%的概率并不算高。但实际情况下你应该这么思考:被M1模型判别为恶性商户,说明这家商户做出恶性行为的概率是一般商户的11倍,那么,就非常有必要用进一步的手段进行检查了。

恶性商户判别模型真正的使用逻辑应该是如下图所示。我们先用M1进行一轮判别,结果是阳性的商户,说明出现恶性行为的概率是一般商户的11倍,那么有必要用精度更高的方式进行判别,或者人工介入进行检查。精度更高的检查和人工介入,成本都是非常高的。因此M1模型的使用能够使我们的成本得到大幅节约。 

Clipboard Image.png 

贝叶斯模型在很多方面都有应用,我们熟知的领域就有垃圾邮件识别、文本的模糊匹配、欺诈判别、商品推荐等等。通过贝叶斯模型的阐述,大家应该有这样的一种体会:分析模型并不取决于多么复杂的数学公式,多么高级的软件工具,多么高深的算法组合;它们的原理往往是通俗易懂的,实现起来也没有多高的门槛。比如贝叶斯模型,用Excel的单元格和加减乘除的符号就能实现。所以,不要觉得数据分析建模有多遥远,其实就在你手边。

附:

朴素贝叶斯分类的工作流程

                                        3.png

 

 

 

 

 

 

 

 

 

 

 

朴素贝叶斯分类适用解决的问题

        在考虑一个结果的概率时候,要考虑众多的属性,贝叶斯算法利用所有可能的数据来进行修正预测,如果大量的特征产生的影响较小,放在一起,组合的影响较大,适合于朴素贝叶斯分类。

应用范围:

贝叶斯定理广泛应用于决策分析。先验概率经常是由决策者主观估计的。在选择最佳决策时,会在取得样本信息后计算后验概率以供决策者使用。

 

 

在R语言中,是如何实现朴素贝叶斯算法的落地的?

 

R语言中的klaR就提供了朴素贝叶斯算法实现的函数NaiveBayes,我们来看一下该函数的用法及参数含义:

NaiveBayes(formula, data, ..., subset, na.action= na.pass)

NaiveBayes(x, grouping, prior, usekernel= FALSE, fL = 0, ...)

formula指定参与模型计算的变量,以公式形式给出,类似于y=x1+x2+x3;

data用于指定需要分析的数据对象;

na.action指定缺失值的处理方法,默认情况下不将缺失值纳入模型计算,也不会发生报错信息,当设为“na.omit”时则会删除含有缺失值的样本;

x指定需要处理的数据,可以是数据框形式,也可以是矩阵形式;

grouping为每个观测样本指定所属类别;

prior可为各个类别指定先验概率,默认情况下用各个类别的样本比例作为先验概率;

usekernel指定密度估计的方法(在无法判断数据的分布时,采用密度密度估计方法),默认情况下使用正态分布密度估计,设为TRUE时,则使用核密度估计方法;

fL指定是否进行拉普拉斯修正,默认情况下不对数据进行修正,当数据量较小时,可以设置该参数为1,即进行拉普拉斯修正。

R语言实战

本次实战内容的数据来自于UCI机器学习网站,后文会给出数据集合源代码的链接。

# 下载并加载所需的应用包

if(!suppressWarnings(require(‘caret’))){
  install.packages(‘caret’)
  require(‘caret’)
}
if(!suppressWarnings(require(‘klaR’))){
  install.packages(‘klaR’)
  require(‘klaR’)
}
if(!suppressWarnings(require(‘pROC’))){
  install.packages(‘pROC’)
  require(‘pROC’)
}
# 读取蘑菇数据集
mydata <- read.csv(file = file.choose())
# 简单的了解一下数据
str(mydata)
summary(mydata)

image.png

该数据集中包含了8124个样本和22个变量(如蘑菇的颜色、形状、光滑度等)。

 

# 抽样,并将总体分为训练集和测试集
set.seed(12)
index <- sample(1:nrow(mydata), size = 0.75*nrow(mydata))
train <- mydata[index,]
test <- mydata[-index,]
# 大致查看抽样与总体之间是否吻合
prop.table(table(mydata$type))
prop.table(table(train$type))
prop.table(table(test$type))

 

image.png

原始数据中毒蘑菇与非毒蘑菇之间的比较比较接近,通过抽选训练集和测试集,发现比重与总体比例大致一样,故可认为抽样的结果能够反映总体状况,可进一步进行建模和测试。

由于影响蘑菇是否有毒的变量有21个,可以先试着做一下特征选择,这里我们就采用随机森林方法(借助caret包实现特征选择的工作)进行重要变量的选择:

#构建rfe函数的控制参数(使用随机森林函数和10重交叉验证抽样方法,并抽取5组样本)
rfeControls_rf <- rfeControl(functions = rfFuncs,method = 'cv',repeats = 5)
#使用rfe函数进行特征选择				
fs_nb <- rfe(x = train[,-1],y = train[,1],sizes = seq(4,21,2),rfeControl = rfeControls_rf)
fs_nb
plot(fs_nb, type = c('g','o'))
fs_nb$optVariables

image.png

结果显示,21个变量中,只需要选择6个变量即可,下图也可以说明这一点:

image.png

所需要选择的变量是:

image.png

接下来,我们就针对这6个变量,使用朴素贝叶斯算法进行建模和预测:

# 使用klaR包中的NaiveBayes函数构建朴素贝叶斯算法
vars <- c('type',fs_nb$optVariables)
fit <- NaiveBayes(type ~ ., data = train[,vars])
# 预测
pred <- predict(fit, newdata = test[,vars][,-1])
# 构建混淆矩阵
freq <- table(pred$class, test[,1])
freq

image.png

# 模型的准确率
accuracy <- sum(diag(freq))/sum(freq)
accuracy

image.png

# 模型的AUC值
modelroc <- roc(as.integer(test[,1]), as.integer(factor(pred$class)))
# 绘制ROC曲线
plot(modelroc, print.auc = TRUE, auc.polygon = TRUE, grid = c(0.1,0.2), grid.col = c('green','red'),max.auc.polygon = TRUE, auc.polygon.col = 'steelblue')

image.png

通过朴素贝叶斯模型,在测试集中,模型的准确率约为97%,而且AUC的值也非常高,一般超过0.8就说明模型比较理想了。

 

参考来源于:https://ask.hellobi.com/blog/chuanshu108/6036

      https://ask.hellobi.com/blog/lsxxx2011/6381      

相关文章:

【机器学习】五、贝叶斯分类

我想说&#xff1a;“任何事件都是条件概率。”为什么呢&#xff1f;因为我认为&#xff0c;任何事件的发生都不是完全偶然的&#xff0c;它都会以其他事件的发生为基础。换句话说&#xff0c;条件概率就是在其他事件发生的基础上&#xff0c;某事件发生的概率。 条件概率是朴…...

k8s 资源管理方式

k8s中资源管理方式可以划分为下面的几种&#xff1a;命令式对象管理、命令式对象配置、声明式对象配置。 命令式对象管理 命令式对象管理&#xff1a;直接使用命令的方式来操作k8s资源, 这种方式操作简单&#xff0c;但是无法审计和追踪。 kubectl run nginx-pod --imagengi…...

Golang Gin 接口返回 Excel 文件

文章目录 1.Web 页面导出数据到文件由后台实现还是前端实现&#xff1f;2.Golang Excel 库选型3.后台实现示例4.xlsx 库的问题5.小结参考文献 1.Web 页面导出数据到文件由后台实现还是前端实现&#xff1f; Web 页面导出表数据到 Excel&#xff08;或其他格式&#xff09;可以…...

实战之巧用header头

案例&#xff1a; 遇到过三次 一次是更改accept&#xff0c;获取到tomcat的绝对路径&#xff0c;结合其他漏洞获取到shell。 一次是更改accept&#xff0c;越权获取到管理员的MD5加密&#xff0c;最后接管超管权限。 一次是更改accept&#xff0c;结合参数获取到key。 这里以越…...

[AUTOSAR][诊断管理][ECU][$36] 数据传输

文章目录 一、简介二、服务请求报文定义三、服务请求报文中参数定义(1)blockSequenceCounter(2)transferRequestParameterRecord三、肯定响应(1)blockSequenceCounter(2)transferResponseParameterRecord四、支持的NRC五、示例代码36_transfer_data.c一、简介 这个服务…...

sw 怎么装新版本

我们在安装solidworks时&#xff0c;有时候会提示A newer version of this applic ation is already installed. Installation stopped.如下图所示 这时候需要点继续安装 然后会出现下图所示情况&#xff0c;vba7.1安装未成功 这是因为我们电脑中以前安装过更高版本的solidw…...

正点原子嵌入式linux驱动开发——Linux 音频驱动

音频是最常用到的功能&#xff0c;音频也是linux和安卓的重点应用场合。STM32MP1带有SAI接口&#xff0c;正点原子的STM32MP1开发板通过此接口外接了一个CS42L51音频DAC芯片&#xff0c;本章就来学习一下如何使能CS42L51驱动&#xff0c;并且CS42L51通过芯片来完成音乐播放与录…...

conda相关的命令操作

准备切换conda环境 cd C:\ProgramData\Anaconda3\Scripts查看所有环境 conda info --envs选择环境 activate pytorch安装torch pip install D:\installPackage\torch-1.2.0-cp36-cp36m-win_amd64.whl安装torchvision pip install D:\installPackage\torchvision-0.4.0-cp3…...

如何快速使用Vue3在electron项目开发chrome Devtools插件

1、建立Vue项目 为了方便快速建立项目&#xff0c;我已经写好脚手架&#xff0c;直接clone项目&#xff0c;快速开发 点击快速进入源代码 拉取代码 git clone https://github.com/xygengcn/electron-devtool.git安装依赖 yarn运行项目 yarn dev打包项目 yarn build2、安装…...

干洗店服务预约小程序有什么作用

要说干洗店&#xff0c;近些年的需求度非常高&#xff0c;一方面是人们生活品质提升&#xff0c;另一方面则是各种服饰对洗涤要求提升等&#xff0c;很多人的衣服很多也会通过干洗店进行清洁。 而对从业商家来说&#xff0c;市场庞大一方面需要不断进行市场教育、品牌提升&…...

【跟小嘉学 Rust 编程】三十四、Rust的Web开发框架之一: Actix-Web的进阶

系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 【跟小嘉学 Rust 编程】四、理解 Rust 的所有权概念 【跟小嘉学 Rust 编程】五、使用结构体关联结构化数据 【跟小嘉学…...

软件安装(1)——Xshell安装

一、前言 本篇文章主要用于介绍Xshell破解版的安装 二、具体步骤 1. 下载Xshell7 链接&#xff1a;https://pan.baidu.com/s/1sFZz1uPb7yeDl6dlM4xtpg 提取码&#xff1a;a7m8 2. 安装Xshell7 选择文件安装目录后安装即可...

Kafka基本原理、生产问题总结及性能优化实践 | 京东云技术团队

Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、支持分区的&#xff08;partition&#xff09;、多副本的&#xff08;replica&#xff09;&#xff0c;基于zookeeper协调的分布式消息系统&#xff0c;它的最大的特性就是可以实时的处理大量数据以满足各种需求场景&a…...

java8利用Stream方法求两个List对象的交集、差集与并集(即:anyMatch和allMatch和noneMatch的区别详解)

1、anyMatch 判断数据列表中是否存在任意一个元素符合设置的predicate条件&#xff0c;如果是就返回true&#xff0c;否则返回false。 接口定义&#xff1a; boolean anyMatch(Predicate<? super T> predicate); 方法描述&#xff1a; 在anyMatch 接口定义中是接收 P…...

Centos7下生成https自签名证书

1、安装openssl yum install openssl2、生成带密码的私有秘钥文件 openssl genrsa -des3 -out server.key 2048使用带密码的私有秘钥文件时需要输入密码&#xff0c;这里直接输入&#xff1a;123456 3、生成不带密码的私有秘钥文件 openssl rsa -in server.key -out serve…...

从中序和后序遍历序列构造二叉树

注意&#xff1a;该解法是基于二叉树中的值不存在重复所写的。 代码如下&#xff0c;可开袋即食 class Solution {private Map<Integer,Integer> map;public TreeNode buildTree(int[] inorder, int[] postorder) {map new HashMap<>();for(int i 0; i < in…...

Apache ActiveMQ (版本 < 5.18.3) (CNVD-2023-69477)RCE修复方案/缓解方案

一、漏洞描述 Apache ActiveMQ 是美国阿帕奇&#xff08;Apache&#xff09;基金会的一套开源的消息中间件&#xff0c;它支持 Java 消息服务、集群、Spring Framework 等。 二、漏洞成因 ActiveMQ 默认开放了 61616 端口用于接收 OpenWire 协议消息&#xff0c;由于针对异常…...

61. 旋转链表、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;李歘歘的博客 &#x1f3c6; &#x1f33a;每天不定期分享一些包括但不限于计算机基础、算法、后端开发相关的知识点&#xff0c;以及职场小菜鸡的生活。&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&am…...

基于tpshop开发多商户源码支持手机端+商家+门店 +分销+淘宝数据导入+APP+可视化编辑

tpshop多商户源码,tpshop商城源码,tpshop b2b2c源码-支持手机端商家门店 分销淘宝数据导入APP可视化编辑 tpshop商城源码算是 thinkphp框架里做的比较早 比较好的源码了&#xff0c;写法简明 友好面向程序猿。 这是一款前几年的版本 虽然后台看着好了些&#xff0c;丝毫不影响…...

ElasticSearch深度解析入门篇:高效搜索解决方案的介绍与实战案例讲解,带你避坑

ElasticSearch深度解析入门篇&#xff1a;高效搜索解决方案的介绍与实战案例讲解&#xff0c;带你避坑 1.Elasticsearch 产生背景 大规模数据如何检索 如&#xff1a;当系统数据量上了 10 亿、100 亿条的时候&#xff0c;我们在做系统架构的时候通常会从以下角度去考虑问题&a…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...