当前位置: 首页 > news >正文

从中序和后序遍历序列构造二叉树

注意:该解法是基于二叉树中的值不存在重复所写的。

代码如下,可开袋即食

class Solution {private Map<Integer,Integer> map;public TreeNode buildTree(int[] inorder, int[] postorder) {map = new HashMap<>();for(int i = 0; i < inorder.length; i++){map.put(inorder[i], i);//记录中序遍历的根节点位置}return build(inorder, postorder, 0, inorder.length-1, 0, inorder.length- 1);}public TreeNode build(int[] inorder, int[] postorder, int i_left, int i_right, int p_left, int p_right){if(p_left > p_right) return null;int r_root = map.get(postorder[p_right]);//中序遍历根节点位置TreeNode root = new TreeNode(postorder[p_right]);//创建根节点root.left = build(inorder, postorder, i_left, r_root-1, p_left, p_left +r_root-i_left-1);root.right = build(inorder, postorder, r_root+1, i_right, p_left + r_root-i_left, p_right-1);return root;}
}

这里主要的问题就是递归的边界问题了。

i_left:中序遍历的左边界

i_right:中序遍历的右边界

p_left:后序遍历的左边界

p_rigjt:后序遍历的右边界

递归的时候,需要注意里面的边界问题。

在左子树递归的时候,难的是后序遍历的边界处理。

i_left不变,i_right自然就变成r_root-1了

p_left不变,而p_right即左子树的长度了,即p_left+root-1-i_left。

为什么是这样算的?因为后序遍历的结果,前面一部分是左子树,后面一部分是柚子树,最后是根节点,如果不懂的话,可以自己画图,然后把中序和后序写出来,自己去想我这句话说的是什么意思。

然后右子树递归的时候,同样,难的是后序遍历的边界处理。

i_left变成r_root+1,i_right不变

p_left变成p_left+r_root-i_left,r_right向左移动一位,p_right-1

后序遍历的左右边界是这一题的难点。

相关文章:

从中序和后序遍历序列构造二叉树

注意&#xff1a;该解法是基于二叉树中的值不存在重复所写的。 代码如下&#xff0c;可开袋即食 class Solution {private Map<Integer,Integer> map;public TreeNode buildTree(int[] inorder, int[] postorder) {map new HashMap<>();for(int i 0; i < in…...

Apache ActiveMQ (版本 < 5.18.3) (CNVD-2023-69477)RCE修复方案/缓解方案

一、漏洞描述 Apache ActiveMQ 是美国阿帕奇&#xff08;Apache&#xff09;基金会的一套开源的消息中间件&#xff0c;它支持 Java 消息服务、集群、Spring Framework 等。 二、漏洞成因 ActiveMQ 默认开放了 61616 端口用于接收 OpenWire 协议消息&#xff0c;由于针对异常…...

61. 旋转链表、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;李歘歘的博客 &#x1f3c6; &#x1f33a;每天不定期分享一些包括但不限于计算机基础、算法、后端开发相关的知识点&#xff0c;以及职场小菜鸡的生活。&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&am…...

基于tpshop开发多商户源码支持手机端+商家+门店 +分销+淘宝数据导入+APP+可视化编辑

tpshop多商户源码,tpshop商城源码,tpshop b2b2c源码-支持手机端商家门店 分销淘宝数据导入APP可视化编辑 tpshop商城源码算是 thinkphp框架里做的比较早 比较好的源码了&#xff0c;写法简明 友好面向程序猿。 这是一款前几年的版本 虽然后台看着好了些&#xff0c;丝毫不影响…...

ElasticSearch深度解析入门篇:高效搜索解决方案的介绍与实战案例讲解,带你避坑

ElasticSearch深度解析入门篇&#xff1a;高效搜索解决方案的介绍与实战案例讲解&#xff0c;带你避坑 1.Elasticsearch 产生背景 大规模数据如何检索 如&#xff1a;当系统数据量上了 10 亿、100 亿条的时候&#xff0c;我们在做系统架构的时候通常会从以下角度去考虑问题&a…...

HTML简单实现v-if与v-for与v-model

Vue启动&#xff01;&#xff01; 首先VIewModel将View和Model连接一起&#xff0c;Model的数据改变View的数据也变 使用Visual Studio Code 启动Vue需要vue.js插件和导入CDN(包) vue.js插件&#xff1a;CTRL shift x 在搜索栏搜 索vue.js安装即可 CDN&#xff1a; http…...

【学习笔记】[PA2021] Fiolki 2

Part 1 前置知识&#xff1a;LGV引理 摘抄自oi-wiki&#xff1a; L G V LGV LGV引理可以用来处理有向无环图上不相交路径计数等问题。 基本定义&#xff1a; w ( P ) w(P) w(P)表示 P P P这条路径上所有边的 边权之积 。&#xff08;路径计数时&#xff0c;可以将边权都设为…...

计算1到100的和

一、不好的写法 public static void main(String[] args) {int sum 0;int n 100;for (int i 1; i < n; i) {sum i;}System.out.println("sum" sum);}1.定义两个整型变量&#xff1b; 2.执行100次加法运算&#xff1b; 3.打印结果到控制台&#xff1b; 二、好…...

C++下OpenMP耗时统计

在C中&#xff0c;如果你使用OpenMP进行并行计算&#xff0c;你可以使用omp_get_wtime()函数来测量代码段的执行时间。这个函数返回一个double类型的值&#xff0c;表示从某一固定点到当前时间的秒数。因此&#xff0c;你可以在代码的开始和结束点分别调用这个函数&#xff0c;…...

PTA 函数题(C语言)-- 阶乘计算升级版

题目title&#xff1a; 阶乘计算升级版 题目作者&#xff1a; 陈越 浙江大学 本题要求实现一个打印非负整数阶乘的函数。 函数接口定义&#xff1a; void Print_Factorial ( const int N ); 其中N是用户传入的参数&#xff0c;其值不超过1000。如果N是非负整数&#…...

内网穿透入门

内网穿透 内网穿透&#xff08;英文&#xff1a;Port Forwarding&#xff09;是一种网络技术&#xff0c;用于将公共互联网&#xff08;外网&#xff09;的请求转发到私有局域网&#xff08;内网&#xff09;中的特定设备或服务。在许多情况下&#xff0c;设备或服务位于一个局…...

Pickle pyhton反序列化

参考文章 Python pickle反序列化浅析 Pickle包含四种方法 pickle.dump(obj, file) 将obj对象进行封存&#xff0c;即序列化&#xff0c;然后写入到file文件中 注:这里的file需要以wb打开(二进制可写模式) pickle.load(file) 将file这个文件进行解封&#xff0c;即反序列化 …...

动静分离技术

一、HAproxy 动静分离 1、概念&#xff1a; HAproxy 动静分离技术是一种用于优化 Web 服务器性能和提高用户体验的策略&#xff0c;它通过将动态内容和静态内容分别路由到不同的后端服务器来实现&#xff0c;减轻服务器负载&#xff0c;提高网站的响应速度。 动态内容包括由…...

STM32单片机智能小车一PWM方式实现小车调速和转向

目录 1. 电机模块开发 2. 让小车动起来 3. 串口控制小车方向 4. 如何进行小车PWM调速 5. PWM方式实现小车转向 1. 电机模块开发 L9110s概述 接通VCC&#xff0c;GND 模块电源指示灯亮&#xff0c; 以下资料来源官方&#xff0c;具体根据实际调试 IA1输入高电平&#xff…...

灰狼优化算法(GWO)python

目录 一、灰狼优化算法的python实现 二、灰狼优化算法与遗传算法的对比分析&#xff08;python&#xff09; 2.1 GWO1.py 2.2 GA1.py 2.3 GWO_vs_GA.py 2.4 运行结果 ​三、基于莱维飞行改进的灰狼优化算法的python实现 一、灰狼优化算法的python实现 import numpy as …...

项目知识点总结-住房图片信息添加-Excel导出

&#xff08;1&#xff09;住房信息添加 Controller&#xff1a; RequestMapping("/add")public String add(Home home, Model model) throws IOException{String sqlPath null;//定义文件保存的本地路径String localPath"D:\\AnZhuang\\Java项目\\选题\\Xin-…...

第三届iEnglish全国ETP大赛决赛即将启动

如今,寓教于乐的学习方式越来越受到家长和孩子的欢迎,“玩中学”成为一种既能培养兴趣又有助于孩子成长的学习趋势。 以“玩转英语,用iEnglish”为活动主题的第三届全国ETP大赛即将于本周五(11月3日)迎来总决赛的抽签仪式。据主办方iEnglish智能英语学习解决方案相关负责人称,…...

创造产业链协同优势后,凌雄科技在DaaS行业转动成长飞轮

企业服务领域&#xff0c;一直存在一种共识&#xff1a;做好很难&#xff0c;但一旦服务模式跑通了&#xff0c;得到了市场的认可&#xff0c;要滚起雪球就会事半功倍。 重资产、重运营的DaaS&#xff08;设备及服务&#xff09;赛道&#xff0c;是个非常典型的细分领域。在这…...

【protobuf】protobuf自定义数据格式,CMake编译C++文件读写自定义数据

protobuf自定义数据格式&#xff0c;CMake编译文件读写自定义数据 1.protobuf安装2.定义.proto文件3.编写main.cpp4.编写CMAkeLists配置文件5.运行 1.protobuf安装 protobuf库链接 2.定义.proto文件 新建一个Person.proto文件和一个Animal.proto文件&#xff0c;内容如下&…...

解决:http://localhost:8080 不在以下 request 合法域名列表中

在搭建资源服务器时&#xff0c;遇到了微信开发者工具中无法访问本地资源服务器的情况&#xff0c;报错如下&#xff1a; 参考一篇博文的方法&#xff0c;完美解决 【解决】http://localhost:8080 不在以下 request 合法域名列表中_localhost不在以下 request 合法域名列表中-…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...