ccc-台大林轩田机器学习基石-hw1
文章目录
- Question1-14
- Question15-PLA
- Question16-PLA平均迭代次数
- Question17-不同迭代系数的PLA
- Question18-Pocket_PLA
- Question19-PLA的错误率
- Question20-修改Pocket_PLA迭代次数
 
 
Question1-14

 对于有明确公式和定义的不需要使用到ml

 智能系统在与环境的连续互动中学习最优行为策略的机器学习问题,学习最优的序贯决策
 
 无标签分类
 
 从标注数据 学习预测模型
 
 主动地提出一些标注请求,将一些经过筛选的数据提交给专家进行标注
 
- 解题关键是计算N+1到N+L上的偶数个数
- 0到N的偶数个数是⌊N⌋2\frac{ ⌊N⌋}{2}2⌊N⌋
- 问题转化成(0到N+L的偶数个数-0到N的偶数个数)
  
 generate了D,但是N+1到N+L上L个点没有generate。每个点都有{被generate,没被generate}两种可能,所以是2L2^L2L
  
 由“无免费午餐定理”可知,任何算法在没有噪声时对于未知样本期望相等
  
 P(5orange&5else)=C105210P(5orange\&5else)=\frac{C_{10}^5}{2^{10}}P(5orange&5else)=210C105

from scipy.special import comb
print(comb(10,5)/2**10)

 P(9orange&1else)=C1090.99×0.1P(9orange\&1else)=\frac{C_{10}^9}{0.9^{9}\times0.1}P(9orange&1else)=0.99×0.1C109
 
print(comb(10,9)*((0.9)**9)*0.1)

- 分v=0.1和0时讨论
 P=C101(910)1(110)9+C100(110)10P=C_{10}^1{(\frac 9{10})^{1}{(\frac 1 {10})}^{9} }+C_{10}^0{{(\frac 1 {10})}^{10}}P=C101(109)1(101)9+C100(101)10
  
  
 Hoeffding:P[∣μ−v∣>ϵ]≤2e−2ϵ2NP[v≤0.1]=P[0.9−v≥0.8]=P[μ−v≥0.8]≤P[∣μ−v∣≥0.8]≤2e−2×0.82×10≈5.5215451440744015×10−6Hoeffding:\mathbb P[| \mu-v|>\epsilon]\le 2e^{-2\epsilon ^2N}\\ \begin{aligned} \mathbb P[v\le 0.1] &=P[0.9-v\ge 0.8]\\ &=P[\mu-v\ge 0.8]\\ &\le P[|\mu-v|\ge 0.8]\\ &\le 2e^{-2\times 0.8^2\times 10}\\ &\approx5.5215451440744015\times 10^{-6} \end{aligned}Hoeffding:P[∣μ−v∣>ϵ]≤2e−2ϵ2NP[v≤0.1]=P[0.9−v≥0.8]=P[μ−v≥0.8]≤P[∣μ−v∣≥0.8]≤2e−2×0.82×10≈5.5215451440744015×10−6
  
- A:奇数绿,偶数橙
- B:奇数橙,偶数绿
- C:1-3橙,4-6绿
- D:1-3绿,4-6橙
5个橙1,只可能是BC中,所以132=8256\frac{1}{32}=\frac{8}{256}321=2568

- 1全橙:BC
- 2全橙:AC
- 3全橙:BC
- 4全橙:AD
- 5全橙:BD
- 6全橙:AD
- 全A,B,C,D被重复算了一遍,要减去4
 P=4×25−445=31256P=\frac{4\times2^5-4}{4^5}=\frac {31}{256}P=454×25−4=25631
  
Question15-PLA

 data链接
 
代码部分:
 utils函数:
import numpy as np
#判别函数,判断所有数据是否分类完成
def Judge(X, y, w):n = X.shape[0]num = np.sum(X.dot(w) * y > 0)return num == ndef PLA(X, y, eta=1, max_step=np.inf):# 获取维度n, d = X.shape# 初始化w = np.zeros(d)# 迭代次数t = 0# 元素的下标i = 0# 错误的下标last = 0while not (Judge(X, y, w)) :if np.sign(X[i, :].dot(w) * y[i]) <= 0:t += 1w += eta * y[i] * X[i, :]# 更新错误last = i# 移动到下一个元素,如果达到n,则重置为0i += 1if i == n:i = 0return t, last, w
主函数:
import numpy as np
import utils as util#读取数据
data = np.genfromtxt("hw1_15_train.dat")
#获取维度
n, d = data.shape
#分离X
X = data[:, :-1]
#添加偏置项1
X = np.c_[np.ones(n), X]
#分离y
y = data[:, -1]
print(util.PLA(X, y))
运行结果:
 
Question16-PLA平均迭代次数

 代码部分:
 utils函数:
import numpy as np
import matplotlib.pyplot as pltdef Judge(X, y, w):n = X.shape[0]num = np.sum(X.dot(w) * y > 0)return num == ndef PLA(X, y, eta=1):n, d = X.shapew = np.zeros(d)t = 0i = 0last = 0while not (Judge(X, y, w)):if np.sign(X[i, :].dot(w) * y[i]) <= 0:t += 1w += eta * y[i] * X[i, :]last = ii += 1if i == n:i = 0return t, last, w#运行g算法n次并返回平均的迭代次数
def average_of_n(g, X, y, n, eta=1):result = []data = np.c_[X, y]for i in range(n):np.random.shuffle(data)X = data[:, :-1]y = data[:, -1]result.append(g(X, y, eta=eta)[0])plt.hist(result)plt.xlabel("迭代次数")plt.title("平均运行次数为" + str(np.mean(result)))plt.show()
主函数:
import numpy as np
import utils as util
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False #显示负号data = np.genfromtxt("hw1_15_train.dat")
#获取维度
n, d = data.shape
#分离X
X = data[:, :-1]
#添加偏置项1
X = np.c_[np.ones(n), X]
#分离y
y = data[:, -1]
util.average_of_n(util.PLA, X, y, 2000, 1)

Question17-不同迭代系数的PLA

 修改迭代系数即可:
util.average_of_n(util.PLA, X, y, 2000, 0.5)

Question18-Pocket_PLA

 utils函数:
import matplotlib.pyplot as plt
import numpy as np
#统计错误数量
def count(X, y, w):num = np.sum(X.dot(w) * y <= 0)return np.sum(num)#预处理
def preprocess(data):# 获取维度n, d = data.shape# 分离XX = data[:, :-1]# 添加偏置项1X = np.c_[np.ones(n), X]# 分离yy = data[:, -1]return X, ydef Pocket_PLA(X, y, eta=1, max_step=np.inf):#max_step 限制迭代次数#获得数据维度n, d = X.shape#初始化w = np.zeros(d)#记录最优向量w0 = np.zeros(d)#记录次数t = 0#记录最少错误数量error = count(X, y, w0)#记录元素的下标i = 0while (error != 0 and t < max_step):if np.sign(X[i, :].dot(w) * y[i]) <= 0:w += eta * y[i] * X[i, :]#迭代次数增加t += 1#记录当前错误error_now = count(X, y, w)if error_now < error:error = error_noww0 = np.copy(w)#移动到下一个元素i += 1#如果达到n,则重置为0if i == n:i = 0return error, w0#运行g算法n次,1代表训练集,2代表测试集
def average_of_n(g, X1, y1, X2, y2, n, eta=1, max_step=np.inf):result = []data = np.c_[X1, y1]m = X2.shape[0]for i in range(n):np.random.shuffle(data)X = data[:, :-1]y = data[:, -1]w = g(X, y, eta=eta, max_step=max_step)[-1]result.append(count(X2, y2, w) / m)plt.hist(result)plt.xlabel("错误率")plt.title("平均错误率为"+str(np.mean(result)))plt.show()
主函数:
import matplotlib.pyplot as plt
import numpy as np
import utils as util
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号data_train = np.genfromtxt("hw1_18_train.dat")
data_test = np.genfromtxt("hw1_18_test.dat")X_train, y_train = util.preprocess(data_train)
X_test, y_test = util.preprocess(data_test)util.average_of_n(util.Pocket_PLA, X_train, y_train, X_test, y_test, 2000, max_step=50)

Question19-PLA的错误率

 utils函数:
import matplotlib.pyplot as plt
import numpy as npdef count(X, y, w):#判断是否同号num = np.sum(X.dot(w) * y <= 0)return np.sum(num)def Judge(X, y, w):n = X.shape[0]#判断是否同号num = np.sum(X.dot(w) * y > 0)return num == ndef preprocess(data):"""数据预处理"""# 获取维度n, d = data.shape# 分离XX = data[:, :-1]# 添加偏置项1X = np.c_[np.ones(n), X]# 分离yy = data[:, -1]return X, ydef PLA(X, y, eta=1,max_step=np.inf):n, d = X.shapew = np.zeros(d)t = 0i = 0last = 0while not (Judge(X, y, w)) and t<max_step:if np.sign(X[i, :].dot(w) * y[i]) <= 0:t += 1w += eta * y[i] * X[i, :]last = ii += 1if i == n:i = 0return t, last, w#运行g算法n次,1代表训练集,2代表测试集
def average_of_n(g, X1, y1, X2, y2, n, eta=1, max_step=np.inf):result = []data = np.c_[X1, y1]m = X2.shape[0]for i in range(n):np.random.shuffle(data)X = data[:, :-1]y = data[:, -1]w = g(X, y, eta=eta, max_step=max_step)[-1]result.append(count(X2, y2, w) / m)plt.hist(result)plt.xlabel("错误率")plt.title("平均错误率为"+str(np.mean(result)))plt.show()
主函数:
import matplotlib.pyplot as plt
import numpy as np
import utils as util
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号data_train = np.genfromtxt("hw1_18_train.dat")
data_test = np.genfromtxt("hw1_18_test.dat")X_train, y_train = util.preprocess(data_train)
X_test, y_test = util.preprocess(data_test)util.average_of_n(util.PLA, X_train, y_train, X_test, y_test, 2000, max_step=50)
Question20-修改Pocket_PLA迭代次数

 utils函数:
import matplotlib.pyplot as plt
import numpy as npdef count(X, y, w):#判断是否同号num = np.sum(X.dot(w) * y <= 0)return np.sum(num)def Judge(X, y, w):n = X.shape[0]#判断是否同号num = np.sum(X.dot(w) * y > 0)return num == ndef preprocess(data):"""数据预处理"""# 获取维度n, d = data.shape# 分离XX = data[:, :-1]# 添加偏置项1X = np.c_[np.ones(n), X]# 分离yy = data[:, -1]return X, ydef Pocket_PLA(X, y, eta=1, max_step=np.inf):#max_step 限制迭代次数#获得数据维度n, d = X.shape#初始化w = np.zeros(d)#记录最优向量w0 = np.zeros(d)#记录次数t = 0#记录最少错误数量error = count(X, y, w0)#记录元素的下标i = 0while (error != 0 and t < max_step):if np.sign(X[i, :].dot(w) * y[i]) <= 0:w += eta * y[i] * X[i, :]#迭代次数增加t += 1#记录当前错误error_now = count(X, y, w)if error_now < error:error = error_noww0 = np.copy(w)#移动到下一个元素i += 1#如果达到n,则重置为0if i == n:i = 0return error, w0#运行g算法n次,1代表训练集,2代表测试集
def average_of_n(g, X1, y1, X2, y2, n, eta=1, max_step=np.inf):result = []data = np.c_[X1, y1]m = X2.shape[0]for i in range(n):np.random.shuffle(data)X = data[:, :-1]y = data[:, -1]w = g(X, y, eta=eta, max_step=max_step)[-1]result.append(count(X2, y2, w) / m)plt.hist(result)plt.xlabel("错误率")plt.title("平均错误率为"+str(np.mean(result)))plt.show()
主函数:
import matplotlib.pyplot as plt
import numpy as np
import utils as util
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号data_train = np.genfromtxt("hw1_18_train.dat")
data_test = np.genfromtxt("hw1_18_test.dat")X_train, y_train = util.preprocess(data_train)
X_test, y_test = util.preprocess(data_test)util.average_of_n(util.Pocket_PLA, X_train, y_train, X_test, y_test, 2000, max_step=100)

相关文章:
 
ccc-台大林轩田机器学习基石-hw1
文章目录Question1-14Question15-PLAQuestion16-PLA平均迭代次数Question17-不同迭代系数的PLAQuestion18-Pocket_PLAQuestion19-PLA的错误率Question20-修改Pocket_PLA迭代次数Question1-14 对于有明确公式和定义的不需要使用到ml 智能系统在与环境的连续互动中学习最优行为策…...
 
hadoop03-MapReduce【尚硅谷】
大数据学习笔记 MapReduce 一、MapReduce概述 MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。 MapReduce处理过程为两个阶段:Map和Reduce。 Map负责把一个任务分解成多个任务;Reduce负责把分解后多任务处…...
测牛学堂:软件测试python学习之异常处理
python的捕获异常 程序在运行时,如果python解释器遇到一个错误,则会停止程序的执行,并且提示一些错误信息,这就是异常。 程序停止执行并且提示错误信息,称之为抛出异常。 因为程序遇到错误会停止执行,有时…...
图神经网络--图神经网络
图神经网络 图神经网络图神经网络一、PageRank简介1.1互联网的图表示1.2PageRank算法概述1.3求解PageRank二、代码实战2.1引入库2.2加载数据,并构建图2.3计算每个节点PageRank重要度2.4用节点尺寸可视化PageRank值一、PageRank简介 PageRank是Google最早的搜索引擎…...
 
React useCallback如何使其性能最大化?
前言 React中最让人畅谈的就是其带来的灵活性,可以说写起来非常的舒服。但是也就是它的灵活性太强,往往让我们忽略了很多细节的地方,而就是这些细节的东西能进行优化,减小我们的性能开销。可以说刚学React和工作几年后写React的代…...
 
长尾关键词使用方法,通过什么方式挖掘长尾关键词?
当你在搜索引擎的搜索栏中输入有关如何使用长尾关键词的查询时,你可能希望有简单快捷的方式出现在搜索结果中,可以帮助你更好地应用seo。 不过,这里要记住一件事:SEO 策略只会为你的网站带来流量;在你的产品良好之前&a…...
 
【网络编程套接字(一)】
网络编程套接字(一)理解源IP地址和目的IP地址理解源MAC地址和目的MAC地址理解源端口号和目的端口号PORT VS PID认识TCP协议和UDP协议网络字节序socket编程接口socket常见APIsockaddr结构简单的UDP网络程序服务端创建套接字服务端绑定字符串IP VS 整数IP客…...
 
shell脚本入门
实习的时候第一个月的考核就是如何部署一个云资源,当时走的捷径(杠杠的搜索能力hhhh)找到了一个shell脚本一键部署,后来被leader问起来就如实说了,leader问有没有看懂shell脚本中的逻辑……(没有࿰…...
 
【经典蓝牙】 蓝牙HFP层协议分析
HFP 概述 HFP概念介绍 HFP(Hands-Free Profile), 是蓝牙免提协议, 可以让蓝牙设备对对端蓝牙设备的通话进行控制,例如蓝牙耳机控制手机通话的接听、 挂断、 拒接、 语音拨号等。HFP中蓝牙两端的数据交互是通过定义好的AT指令来通讯的。 &am…...
互联网摸鱼日报(2023-02-26)
互联网摸鱼日报(2023-02-26) InfoQ 热门话题 迁移工具 Air2phin 宣布开源,2 步迁移 Airflow 至 Dolphinscheduler 专访奇安信董国伟博士:目前开源安全的现状并不乐观,但其重要性已成各方共识 专访Brian Behlendorf&…...
 
关于程序员中年危机的一个真实案例
 关于中年危机,网上已经有了各种各样的解读。但是,这两天一个学员跟我简单几句聊天,却触发了对于中年危机的另一种思考。如果你曾经也有点迷茫,或许你可以稍微花几分钟看下这个故事。 一、无奈的故事  39岁还出来面试&#x…...
 
【fly-iot飞凡物联】(2):如何从0打造自己的物联网平台,使用开源的技术栈搭建一个高性能的物联网平台,目前在设计阶段。
目录前言1,fly-iot 飞凡物联2,mqtt-broker 服务3, 管理后台产品/设备设计4,数据存储目前使用mysql,消息存储到influxdb中5,规则引擎使用 ekuiper6, 总结和其他的想法前言 本文的原文连接是: https://blog.csdn.net/freewebsys/article/detail…...
 
Hadoop MapReduce
目录1.1 MapReduce介绍1.2 MapReduce优缺点MapReduce实例进程阶段组成1.3 Hadoop MapReduce官方示例案例:评估圆周率π(PI)的值案例:wordcount单词词频统计1.4 Map阶段执行流程1.5 Reduce阶段执行流程1.6 Shuffle机制1.1 MapReduc…...
 
时间复杂度和空间复杂度详解
有一堆数据需要排序,A要使用快速排序,B要使用堆排序,A认为自己的代码更高效,B也认为自己的代码更高效,在这种情况下,怎么来判断谁的代码更好一点呢?这时候就有了时间复杂度和空间复杂度。 目录 …...
【C++】面向对象---封装
【C】面向对象—封装 1.封装的意义 封装是C面向对象三大特性之一 封装的意义: 将属性和行为作为一个整体,表现生活的事物将属性和行为加以权限控制 封装意义一: 在设计类的时候,属性和行为写在一起,表现事物 语…...
Docker简介
一、介绍容器虚拟化技术(带环境安装的一种解决方案)打破程序即应用的观念,透过镜像image将作业系统核心除外,运用应用程序所需要的运行环境,由上而下打包,达到应用程序跨平台间的无缝接轨运作。Docker是基于…...
 
量化学习(一)数据获取
试验环境 windows10 AnacondaPyCharm(小白参考文章:https://coderx.com.cn/?p14) VM中安装MySQL5.7(设置utf8及相应配置优化) 关于复权 小白参考文章:https://zhuanlan.zhihu.com/p/469820288 数据来源 AK…...
java并发编程讨论:锁的选择
java并发编程 线程堆栈大小 单线程的堆栈大小默认为1M,1000个线程内存就占了1G。所以,受制于内存上限,单纯依靠多线程难以支持大量任务并发。 上下文切换开销 ReentrantLock 2个线程交替自增一个共享变量,使用ReentrantLock&…...
 
大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——ReduceTask工作机制
1、ReduceTask工作机制 ReduceTask工作机制,如下图所示。 (1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直…...
 
Nginx的介绍、安装与常用命令
前言:传统结构上(如下图所示)我们只会部署一台服务器用来跑服务,在并发量小,用户访问少的情况下基本够用但随着用户访问的越来越多,并发量慢慢增多了,这时候一台服务器已经不能满足我们了,需要我们增加服务…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
 
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
 
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
 
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
 
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
