当前位置: 首页 > news >正文

pytorch笔记 GRUCELL

1 介绍

GRU的一个单元

2 基本使用方法

torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None)

输入:(batch,input_size) 

输出和隐藏层:(batch,hidden_size)

3 举例

import torch.nn as nnrnn = nn.GRUCell(input_size=5,hidden_size=10)input_x = torch.randn(3, 5)
#batch,input_sizeh0 = torch.randn(3, 10)
#batch,hidden_sizeoutput= rnn(input_x, h0)
output.shape, output
'''
(torch.Size([3, 10]),tensor([[-0.4414,  1.0060,  0.3346, -0.2446, -0.4170, -0.6201, -1.0049,  0.1765,0.2238, -2.0249],[ 0.2764,  0.6327,  0.1682, -0.0433,  1.2226, -1.0959,  0.0345, -0.6375,-1.4599, -0.3670],[ 0.9447, -0.0849,  0.3983, -0.4078,  0.9805, -0.1826,  0.2151,  0.3382,-0.1147, -0.2307]], grad_fn=<AddBackward0>))
'''

4 和GRU的异同

功能性
  • GRU: 它是一个完整的循环层,可以处理整个序列的输入,并一次性返回整个序列的输出。
  • GRUCell: 它处理单个时间步长的输入,并返回单个时间步长的输出。它更为基础,通常在你想自定义循环过程时使用。
输入:
  • GRU: 期望的输入形状为 (seq_len, batch, input_size)(如果 batch_first=True,则为 (batch, seq_len, input_size))。
  • GRUCell: 期望的输入形状为 (batch, input_size)
输出:
  • GRU: 它返回两个输出 —— 整个序列的输出和最后一个时间步长的隐藏状态。输出的形状为 (seq_len, batch, hidden_size)(num_layers * num_directions, batch, hidden_size)
  • GRUCell: 它只返回下一个时间步长的隐藏状态,其形状为 (batch, hidden_size)
用法:
  • 使用 GRU 时,你可以一次性将整个序列传入,而不需要自己编写循环。
  • 使用 GRUCell 时,你需要手动编写循环,以一个时间步长为单位处理输入。
应用场景:
  • GRU: 当你想使用标准的循环过程处理整个序列时,通常使用GRU。
  • GRUCell: 当你想自定义循环过程或有特定的需求时使用,例如混合不同类型的RNN单元或在循环中执行特定操作。

5 一个GRU由几个GRUcell组成?

一个具有 seq_lenbidirectional=True 和指定的 num_layers 的 GRU 对应的 GRUCell 的数量为:

  1. seq_len:对于长度为 seq_len 的输入序列,GRU 在内部会进行 seq_len 次循环操作,每次循环处理序列中的一个时间步长。所以这部分会贡献 seq_len 个 GRUCell。

  2. bidirectional=True:当 GRU 是双向的,即 bidirectional=True,那么对于每一个时间步长,都会有两个 GRUCell 被调用:一个是正向的,另一个是反向的。因此,双向性将 GRUCell 的数量增加一倍。

  3. num_layers:这表示你要堆叠多少层的 GRU。每一层都会为每个时间步调用其自己的 GRUCell(考虑到双向性,这可能是两个)。所以如果你有 num_layers 层,那么你需要乘以这个数字。

综上所述,总的 GRUCell 的数量为: Total GRUCells=seq_len×(2 if bidirectional else 1)×num_layers

相关文章:

pytorch笔记 GRUCELL

1 介绍 GRU的一个单元 2 基本使用方法 torch.nn.GRUCell(input_size, hidden_size, biasTrue, deviceNone, dtypeNone) 输入&#xff1a;&#xff08;batch&#xff0c;input_size&#xff09; 输出和隐藏层&#xff1a;&#xff08;batch&#xff0c;hidden_size&#xf…...

不解压,也能列出文件信息

gz文件&#xff0c;不解压&#xff0c;查看压缩前文件的大小&#xff1a; gzip -l ~$ ll -rw-r--r-- 1 fee fee 17343450 Nov 2 12:02 xxx.log.2023-11-02T04-02-56.000.1 -rw-r--r-- 1 fee fee 3150599 Nov 2 12:02 xxx.log.2023-11-02T04-02-56.000.1.gz ~$ gzip -l gb…...

微型计算机组成原理

1、微型计算机组成 一个传统微型计算机硬件组成如下图 CPU通过地址线、数据线和控制信号线组成的本地总线&#xff08;内部总线&#xff09;与系统其他部分进行数据通信。 地址线用于提供内存或I/O设备的地址&#xff0c;即指明需要读/写数据的具体位置&#xff1b;数据线用…...

基站/手机是怎么知道信道情况的?

在无线通信系统中&#xff0c;信道的情况对信号的发送起到至关重要的作用&#xff0c;基站和手机根据信道的情况选择合适的资源配置和发送方式进行通信&#xff0c;那么基站或者手机是怎么知道信道的情况呢&#xff1f; 我们先来看生活中的一个例子&#xff0c;从A地发货到B地…...

进程/线程

进程是资源单位, 线程是执行单位。 每一个进程至少要有一个线程&#xff0c;启动每一个程序默认都会有一个主线程 1.多线程的两种实现 from threading import Thread#方法一 def func(name):for i in range(10):print(name, i)if __name__ __main__:t Thread(targetfunc, …...

Python 应用 之 转换音频格式

目录 一、python音频转换 1、pydub 音频包安装 2、 ffmpeg安装 1&#xff09;、解压后&#xff0c;添加到环境变量中 2&#xff09;、可以直接放在python安装目录下 3、python程序 1&#xff09;、引入相关包 2&#xff09;、重命名 3&#xff09;、to Mp3 4&#xf…...

Oracle JDK 和OpenJDK两者有什么异同点

Oracle JDK 和 OpenJDK 是两种不同版本的 Java Development Kit&#xff08;Java 开发工具包&#xff09;&#xff0c;它们都提供了用于开发 Java 程序的一系列工具和库。以下是它们之间的一些主要异同点&#xff1a; 相同点&#xff1a; 功能&#xff1a;在大多数情况下&…...

GPT引发智能AI时代潮流

最近GPT概念爆火&#xff0c;许多行业开始竞相发展AI &#xff0c;工作就业也将面临跳转&#xff0c;目前测试就业形势就分为了两大类&#xff0c;一类是测试行业如功能、性能、自动化综合性人才就业技能需求&#xff0c;另一类便是AI测试行业的需求普遍增长&#xff0c;原本由…...

FreeSWITCH mrcp-v2小记

最近得知有人受mrcp的困扰&#xff0c;于是写了这篇小文&#xff0c;希望能有所帮助 FreeSWITCH版本选择 目前当然选择1.10.10&#xff0c;不建议老版本&#xff0c;差别在于老版本用到的libmrcp比较旧&#xff0c;是1.2版本&#xff0c;bug比较多&#xff0c;有时会crash&am…...

如何将你的PC电脑数据迁移到Mac电脑?使用“迁移助理”从 PC 传输到 Mac的具体操作教程

有的小伙伴因为某一项工作或者其它原因由Windows电脑换成了Mac电脑&#xff0c;但是数据和文件都在原先的Windows电脑上&#xff0c;不知道怎么传输。接下来小编就为大家介绍使用“迁移助理”将你的通讯录、日历、电子邮件帐户等内容从 Windows PC 传输到 Mac 上的相应位置。 在…...

Elasticsearch集群搭建、数据分片以及位置坐标实现附近的人搜索

集群搭建、数据分片 es使用两种不同的方式来发现对方: 广播单播也可以同时使用两者,但默认的广播,单播需要已知节点列表来完成 一 广播方式 当es实例启动的时候,它发送了广播的ping请求到地址224.2.2.4:54328。而其他的es实例使用同样的集群名称响应了这个请求。 一般这…...

深度学习_3 数据操作之线代,微分

线代基础 标量 只有一个元素的张量。可以通过 x torch.tensor(3.0) 方式创建。 向量 由多个标量组成的列表&#xff08;一维张量&#xff09;。比如 x torch.arange(4) 就是创建了一个1*4的向量。可以通过下标获取特定元素&#xff08;x[3]&#xff09;&#xff0c;可以通…...

树莓派安装Ubuntu22.04LTS桌面版

工具&#xff1a;树莓派4B Raspberry Pi 自己下载的ubuntu22.04LTS img磁盘镜像文件 这里有一个小技巧&#xff1a;这个Raspberry Pi的选择镜像的时候在最后面一行可以选择自定义的镜像&#xff0c;哈哈哈哈&#xff0c;这就使得我们可以自己下载&#xff0c;而且知道那个文…...

Rust编程基础之函数和表达式

1.Rust函数 在之前的文章中,我们已经见到了一个函数:main函数, 它是很多程序的入口点。也见过 fn 关键字&#xff0c;它用来声明新函数。 Rust 代码中的函数和变量名使用 snake case 规范风格。在 snake case 中&#xff0c;所有字母都是小写并使用下划线分隔单词。这是一个包…...

关于preempt count的疑问

Linux中的preempt_count - 知乎 https://www.cnblogs.com/hellokitty2/p/15652312.html LWN&#xff1a;关于preempt_count()的四个小讨论&#xff01;-CSDN博客 主要是参考这些文章 之前一直认为只要是in_interrupt()返回非0值&#xff0c;那么就可以认为当前在中断上下文。即…...

Windows 开启 Kerberos 的火狐 Firefox 浏览器访问yarn、hdfs

背景&#xff1a;类型为IPA或者MIT KDC&#xff0c;windows目前只支持 firefoxMIT Kerberos客户端的形式&#xff0c;其他windows端浏览器IE、chrome、edge&#xff0c;没有办法去调用MIT Kerberos Windows客户端的GSSAPI验证方式&#xff0c;所以均无法使用 Windows 开启 Kerb…...

华为云资源搭建过程

网络搭建 EIP&#xff1a; 弹性EIP&#xff0c;支持IPv4和IPv6。 弹性公网IP&#xff08;Elastic IP&#xff09;提供独立的公网IP资源&#xff0c;包括公网IP地址与公网出口带宽服务。可以与弹性云服务器、裸金属服务器、虚拟IP、弹性负载均衡、NAT网关等资源灵活地绑定及解绑…...

突破防火墙的一种方法

当Linux防火墙阻止来自某个ip的数据时&#xff0c;它应该是根据ip数据报里“源IP地址”字段取得的对方ip吧&#xff0c;那对方就不能通过篡改“源IP地址”来绕过防火墙吗&#xff1f;NAT模式下的路由器就修改了这个字段。 但这样的话&#xff0c;攻击者是收不到服务器返回的数…...

Docker 多阶段构建的原理及构建过程展示

Docker多阶段构建是一个优秀的技术&#xff0c;可以显著减少 Docker 镜像的大小&#xff0c;从而加快镜像的构建速度&#xff0c;并减少镜像的传输时间和存储空间。本文将详细介绍 Docker 多阶段构建的原理、用途以及示例。 Docker 多阶段构建的原理 在传统的 Docker 镜像构建…...

【开题报告】基于Spring Boot的家装产品展示交易平台的设计与实现

1.研究背景和目的 随着人们对居住环境舒适度和个性化需求的不断提升&#xff0c;家装市场正逐渐发展成为一个重要的消费领域。为了满足消费者对家装产品的需求&#xff0c;建立一个高效、可靠的家装产品展示交易平台变得尤为重要。本项目旨在通过使用Spring Boot框架&#xff…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

小智AI+MCP

什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析&#xff1a;AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github&#xff1a;https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

Linux入门(十五)安装java安装tomcat安装dotnet安装mysql

安装java yum install java-17-openjdk-devel查找安装地址 update-alternatives --config java设置环境变量 vi /etc/profile #在文档后面追加 JAVA_HOME"通过查找安装地址命令显示的路径" #注意一定要加$PATH不然路径就只剩下新加的路径了&#xff0c;系统很多命…...