当前位置: 首页 > news >正文

pytorch笔记 GRUCELL

1 介绍

GRU的一个单元

2 基本使用方法

torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None)

输入:(batch,input_size) 

输出和隐藏层:(batch,hidden_size)

3 举例

import torch.nn as nnrnn = nn.GRUCell(input_size=5,hidden_size=10)input_x = torch.randn(3, 5)
#batch,input_sizeh0 = torch.randn(3, 10)
#batch,hidden_sizeoutput= rnn(input_x, h0)
output.shape, output
'''
(torch.Size([3, 10]),tensor([[-0.4414,  1.0060,  0.3346, -0.2446, -0.4170, -0.6201, -1.0049,  0.1765,0.2238, -2.0249],[ 0.2764,  0.6327,  0.1682, -0.0433,  1.2226, -1.0959,  0.0345, -0.6375,-1.4599, -0.3670],[ 0.9447, -0.0849,  0.3983, -0.4078,  0.9805, -0.1826,  0.2151,  0.3382,-0.1147, -0.2307]], grad_fn=<AddBackward0>))
'''

4 和GRU的异同

功能性
  • GRU: 它是一个完整的循环层,可以处理整个序列的输入,并一次性返回整个序列的输出。
  • GRUCell: 它处理单个时间步长的输入,并返回单个时间步长的输出。它更为基础,通常在你想自定义循环过程时使用。
输入:
  • GRU: 期望的输入形状为 (seq_len, batch, input_size)(如果 batch_first=True,则为 (batch, seq_len, input_size))。
  • GRUCell: 期望的输入形状为 (batch, input_size)
输出:
  • GRU: 它返回两个输出 —— 整个序列的输出和最后一个时间步长的隐藏状态。输出的形状为 (seq_len, batch, hidden_size)(num_layers * num_directions, batch, hidden_size)
  • GRUCell: 它只返回下一个时间步长的隐藏状态,其形状为 (batch, hidden_size)
用法:
  • 使用 GRU 时,你可以一次性将整个序列传入,而不需要自己编写循环。
  • 使用 GRUCell 时,你需要手动编写循环,以一个时间步长为单位处理输入。
应用场景:
  • GRU: 当你想使用标准的循环过程处理整个序列时,通常使用GRU。
  • GRUCell: 当你想自定义循环过程或有特定的需求时使用,例如混合不同类型的RNN单元或在循环中执行特定操作。

5 一个GRU由几个GRUcell组成?

一个具有 seq_lenbidirectional=True 和指定的 num_layers 的 GRU 对应的 GRUCell 的数量为:

  1. seq_len:对于长度为 seq_len 的输入序列,GRU 在内部会进行 seq_len 次循环操作,每次循环处理序列中的一个时间步长。所以这部分会贡献 seq_len 个 GRUCell。

  2. bidirectional=True:当 GRU 是双向的,即 bidirectional=True,那么对于每一个时间步长,都会有两个 GRUCell 被调用:一个是正向的,另一个是反向的。因此,双向性将 GRUCell 的数量增加一倍。

  3. num_layers:这表示你要堆叠多少层的 GRU。每一层都会为每个时间步调用其自己的 GRUCell(考虑到双向性,这可能是两个)。所以如果你有 num_layers 层,那么你需要乘以这个数字。

综上所述,总的 GRUCell 的数量为: Total GRUCells=seq_len×(2 if bidirectional else 1)×num_layers

相关文章:

pytorch笔记 GRUCELL

1 介绍 GRU的一个单元 2 基本使用方法 torch.nn.GRUCell(input_size, hidden_size, biasTrue, deviceNone, dtypeNone) 输入&#xff1a;&#xff08;batch&#xff0c;input_size&#xff09; 输出和隐藏层&#xff1a;&#xff08;batch&#xff0c;hidden_size&#xf…...

不解压,也能列出文件信息

gz文件&#xff0c;不解压&#xff0c;查看压缩前文件的大小&#xff1a; gzip -l ~$ ll -rw-r--r-- 1 fee fee 17343450 Nov 2 12:02 xxx.log.2023-11-02T04-02-56.000.1 -rw-r--r-- 1 fee fee 3150599 Nov 2 12:02 xxx.log.2023-11-02T04-02-56.000.1.gz ~$ gzip -l gb…...

微型计算机组成原理

1、微型计算机组成 一个传统微型计算机硬件组成如下图 CPU通过地址线、数据线和控制信号线组成的本地总线&#xff08;内部总线&#xff09;与系统其他部分进行数据通信。 地址线用于提供内存或I/O设备的地址&#xff0c;即指明需要读/写数据的具体位置&#xff1b;数据线用…...

基站/手机是怎么知道信道情况的?

在无线通信系统中&#xff0c;信道的情况对信号的发送起到至关重要的作用&#xff0c;基站和手机根据信道的情况选择合适的资源配置和发送方式进行通信&#xff0c;那么基站或者手机是怎么知道信道的情况呢&#xff1f; 我们先来看生活中的一个例子&#xff0c;从A地发货到B地…...

进程/线程

进程是资源单位, 线程是执行单位。 每一个进程至少要有一个线程&#xff0c;启动每一个程序默认都会有一个主线程 1.多线程的两种实现 from threading import Thread#方法一 def func(name):for i in range(10):print(name, i)if __name__ __main__:t Thread(targetfunc, …...

Python 应用 之 转换音频格式

目录 一、python音频转换 1、pydub 音频包安装 2、 ffmpeg安装 1&#xff09;、解压后&#xff0c;添加到环境变量中 2&#xff09;、可以直接放在python安装目录下 3、python程序 1&#xff09;、引入相关包 2&#xff09;、重命名 3&#xff09;、to Mp3 4&#xf…...

Oracle JDK 和OpenJDK两者有什么异同点

Oracle JDK 和 OpenJDK 是两种不同版本的 Java Development Kit&#xff08;Java 开发工具包&#xff09;&#xff0c;它们都提供了用于开发 Java 程序的一系列工具和库。以下是它们之间的一些主要异同点&#xff1a; 相同点&#xff1a; 功能&#xff1a;在大多数情况下&…...

GPT引发智能AI时代潮流

最近GPT概念爆火&#xff0c;许多行业开始竞相发展AI &#xff0c;工作就业也将面临跳转&#xff0c;目前测试就业形势就分为了两大类&#xff0c;一类是测试行业如功能、性能、自动化综合性人才就业技能需求&#xff0c;另一类便是AI测试行业的需求普遍增长&#xff0c;原本由…...

FreeSWITCH mrcp-v2小记

最近得知有人受mrcp的困扰&#xff0c;于是写了这篇小文&#xff0c;希望能有所帮助 FreeSWITCH版本选择 目前当然选择1.10.10&#xff0c;不建议老版本&#xff0c;差别在于老版本用到的libmrcp比较旧&#xff0c;是1.2版本&#xff0c;bug比较多&#xff0c;有时会crash&am…...

如何将你的PC电脑数据迁移到Mac电脑?使用“迁移助理”从 PC 传输到 Mac的具体操作教程

有的小伙伴因为某一项工作或者其它原因由Windows电脑换成了Mac电脑&#xff0c;但是数据和文件都在原先的Windows电脑上&#xff0c;不知道怎么传输。接下来小编就为大家介绍使用“迁移助理”将你的通讯录、日历、电子邮件帐户等内容从 Windows PC 传输到 Mac 上的相应位置。 在…...

Elasticsearch集群搭建、数据分片以及位置坐标实现附近的人搜索

集群搭建、数据分片 es使用两种不同的方式来发现对方: 广播单播也可以同时使用两者,但默认的广播,单播需要已知节点列表来完成 一 广播方式 当es实例启动的时候,它发送了广播的ping请求到地址224.2.2.4:54328。而其他的es实例使用同样的集群名称响应了这个请求。 一般这…...

深度学习_3 数据操作之线代,微分

线代基础 标量 只有一个元素的张量。可以通过 x torch.tensor(3.0) 方式创建。 向量 由多个标量组成的列表&#xff08;一维张量&#xff09;。比如 x torch.arange(4) 就是创建了一个1*4的向量。可以通过下标获取特定元素&#xff08;x[3]&#xff09;&#xff0c;可以通…...

树莓派安装Ubuntu22.04LTS桌面版

工具&#xff1a;树莓派4B Raspberry Pi 自己下载的ubuntu22.04LTS img磁盘镜像文件 这里有一个小技巧&#xff1a;这个Raspberry Pi的选择镜像的时候在最后面一行可以选择自定义的镜像&#xff0c;哈哈哈哈&#xff0c;这就使得我们可以自己下载&#xff0c;而且知道那个文…...

Rust编程基础之函数和表达式

1.Rust函数 在之前的文章中,我们已经见到了一个函数:main函数, 它是很多程序的入口点。也见过 fn 关键字&#xff0c;它用来声明新函数。 Rust 代码中的函数和变量名使用 snake case 规范风格。在 snake case 中&#xff0c;所有字母都是小写并使用下划线分隔单词。这是一个包…...

关于preempt count的疑问

Linux中的preempt_count - 知乎 https://www.cnblogs.com/hellokitty2/p/15652312.html LWN&#xff1a;关于preempt_count()的四个小讨论&#xff01;-CSDN博客 主要是参考这些文章 之前一直认为只要是in_interrupt()返回非0值&#xff0c;那么就可以认为当前在中断上下文。即…...

Windows 开启 Kerberos 的火狐 Firefox 浏览器访问yarn、hdfs

背景&#xff1a;类型为IPA或者MIT KDC&#xff0c;windows目前只支持 firefoxMIT Kerberos客户端的形式&#xff0c;其他windows端浏览器IE、chrome、edge&#xff0c;没有办法去调用MIT Kerberos Windows客户端的GSSAPI验证方式&#xff0c;所以均无法使用 Windows 开启 Kerb…...

华为云资源搭建过程

网络搭建 EIP&#xff1a; 弹性EIP&#xff0c;支持IPv4和IPv6。 弹性公网IP&#xff08;Elastic IP&#xff09;提供独立的公网IP资源&#xff0c;包括公网IP地址与公网出口带宽服务。可以与弹性云服务器、裸金属服务器、虚拟IP、弹性负载均衡、NAT网关等资源灵活地绑定及解绑…...

突破防火墙的一种方法

当Linux防火墙阻止来自某个ip的数据时&#xff0c;它应该是根据ip数据报里“源IP地址”字段取得的对方ip吧&#xff0c;那对方就不能通过篡改“源IP地址”来绕过防火墙吗&#xff1f;NAT模式下的路由器就修改了这个字段。 但这样的话&#xff0c;攻击者是收不到服务器返回的数…...

Docker 多阶段构建的原理及构建过程展示

Docker多阶段构建是一个优秀的技术&#xff0c;可以显著减少 Docker 镜像的大小&#xff0c;从而加快镜像的构建速度&#xff0c;并减少镜像的传输时间和存储空间。本文将详细介绍 Docker 多阶段构建的原理、用途以及示例。 Docker 多阶段构建的原理 在传统的 Docker 镜像构建…...

【开题报告】基于Spring Boot的家装产品展示交易平台的设计与实现

1.研究背景和目的 随着人们对居住环境舒适度和个性化需求的不断提升&#xff0c;家装市场正逐渐发展成为一个重要的消费领域。为了满足消费者对家装产品的需求&#xff0c;建立一个高效、可靠的家装产品展示交易平台变得尤为重要。本项目旨在通过使用Spring Boot框架&#xff…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

java 局域网 rtsp 取流 WebSocket 推送到前端显示 低延迟

众所周知 摄像头取流推流显示前端延迟大 传统方法是服务器取摄像头的rtsp流 然后客户端连服务器 中转多了&#xff0c;延迟一定不小。 假设相机没有专网 公网 1相机自带推流 直接推送到云服务器 然后客户端拉去 2相机只有rtsp &#xff0c;边缘服务器拉流推送到云服务器 …...

数据库管理与高可用-MySQL故障排查与生产环境优化

目录 #1.1MySQL单案例故障排查 1.1.1MySQL常见的故障排查 1.1.2MySQL主从故障排查 #2.1MySQL优化 2.1.1硬件方面的优化 2.1.2进程方面的优化 #3.1MySQL存储引擎 3.1.1 MyISAM存储引擎 3.1.2 InnoDB存储引擎 1.1MySQL单案例故障排查 1.1.1MySQL常见的故障排查 &#xff08;1&…...

LeetCode第244题_最短单词距离II

LeetCode第244题&#xff1a;最短单词距离II 问题描述 设计一个类&#xff0c;接收一个单词数组 wordsDict&#xff0c;并实现一个方法&#xff0c;该方法能够计算两个不同单词在该数组中出现位置的最短距离。 你需要实现一个 WordDistance 类: WordDistance(String[] word…...

Tableau for mac 驱动

Tableau 驱动程序安装指南 对于希望在 Mac OS 上使用 Tableau 进行数据分析的用户来说&#xff0c;确保正确安装相应的驱动程序至关重要。Tableau 支持多种数据库连接方式&#xff0c;并提供官方文档指导如何设置这些连接。 安装适用于 Mac 的 JDBC 或 ODBC 驱动程序 为了使…...