当前位置: 首页 > news >正文

二叉树系列主题Code

Python实现二叉树遍历

# 定义二叉树节点类  
class TreeNode:  def __init__(self, val=0, left=None, right=None):  self.val = val  self.left = left  self.right = right  # 前序遍历(非递归)  
def preorderTraversal(root):  if not root:  return []  stack, output = [root], []  while stack:  node = stack.pop()  if node:  output.append(node.val)  if node.right:  stack.append(node.right)  if node.left:  stack.append(node.left)  return output  # 中序遍历(非递归)  
def inorderTraversal(root):  stack, output, current = [], [], root  while True:  while current:  stack.append(current)  current = current.left  if not stack:  return output  current = stack.pop()  output.append(current.val)  current = current.right  # 后序遍历(非递归)  
def postorderTraversal(root):  if not root:  return []  stack1, stack2, output = [root], [], []  while stack1:  node = stack1.pop()  if node:  stack2.append(node)  if node.left:  stack1.append(node.left)  if node.right:  stack1.append(node.right)  while stack2:  node = stack2.pop()  output.append(node.val)  return output[::-1]  # 逆序输出,得到后序遍历结果  # 层次遍历(非递归)  
def levelOrderTraversal(root):  if not root:  return []  from collections import deque  queue, output = deque([root]), []  while queue:  level_size = len(queue)  current_level = []  for _ in range(level_size):  node = queue.popleft()  # 弹出队列左侧元素  current_level.append(node.val)  if node.left:  queue.append(node.left)  # 左孩子入队  if node.right:  queue.append(node.right)  # 右孩子入队  output.append(current_level)  return output

cpp实现二叉树遍历

#include <iostream>  
#include <stack>  
#include <queue>
using namespace std;  // 二叉树节点定义  
struct TreeNode {  int val;  TreeNode* left;  TreeNode* right;  TreeNode(int x) : val(x), left(NULL), right(NULL) {}  
};  // 前序遍历(递归实现)  
void preorderTraversalRecursive(TreeNode* root) {  if (root == NULL) {  return;  }  cout << root->val << " ";  preorderTraversalRecursive(root->left);  preorderTraversalRecursive(root->right);  
}  // 前序遍历(迭代实现)  
void preorderTraversalIterative(TreeNode* root) {  if (root == NULL) {  return;  }  stack<TreeNode*> stk;  stk.push(root);  while (!stk.empty()) {  TreeNode* node = stk.top();  stk.pop();  cout << node->val << " ";  if (node->right != NULL) {  stk.push(node->right);  }  if (node->left != NULL) {  stk.push(node->left);  }  }  
}  // 中序遍历(递归实现)  
void inorderTraversalRecursive(TreeNode* root) {  if (root == NULL) {  return;  }  inorderTraversalRecursive(root->left);  cout << root->val << " ";  inorderTraversalRecursive(root->right);  
}  // 中序遍历(迭代实现)  
void inorderTraversalIterative(TreeNode* root) {  if (root == NULL) {  return;  }  stack<TreeNode*> stk;  TreeNode* curr = root;  while (curr != NULL || !stk.empty()) {  while (curr != NULL) {  stk.push(curr);  curr = curr->left;  }  curr = stk.top();  stk.pop();  cout << curr->val << " ";  curr = curr->right;  }  
}  // 后序遍历(递归实现)  
void postorderTraversalRecursive(TreeNode* root) {  if (root == NULL) {  return;  }  postorderTraversalRecursive(root->left);  postorderTraversalRecursive(root->right);  cout << root->val << " ";  
}  // 后序遍历(迭代实现)  
void postorderTraversalIterative(TreeNode* root) {  if (root == NULL) {  return;  }  stack<TreeNode*> stk1, stk2;  stk1.push(root);  while (!stk1.empty()) {  TreeNode* node = stk1.top();  stk1.pop();  stk2.push(node);  if (node->left != NULL) {  stk1.push(node->left);  }  if (node->right != NULL) {  stk1.push(node->right);  }  }  while (!stk2.empty()) {  cout << stk2.top()->val << " ";  stk2.pop();  }  
}  // 层次遍历  
void levelOrderTraversal(TreeNode* root) {  if (root == NULL) {  return;  }  queue<TreeNode*> q;  q.push(root);  while (!q.empty()) {  int levelSize = q.size();  for (int i = 0; i < levelSize; i++) {  TreeNode* node = q.front();  q.pop();  cout << node->val << " ";  if (node->left != NULL) {  q.push(node->left);  }  if (node->right != NULL) {  q.push(node->right);  }  }  cout << endl; // 每一层遍历完后换行  }  int main() {  // 创建二叉树  TreeNode* root = new TreeNode(1);  root->left = new TreeNode(2);  root->right = new TreeNode(3);  root->left->left = new TreeNode(4);  root->left->right = new TreeNode(5);  root->right->left = new TreeNode(6);  root->right->right = new TreeNode(7);  cout << "前序遍历(递归实现): ";  preorderTraversalRecursive(root); cout << endl; // 输出:1 2 4 5 3 6 7
}

水平有限,有问题随时联系~

相关文章:

二叉树系列主题Code

Python实现二叉树遍历 # 定义二叉树节点类 class TreeNode: def __init__(self, val0, leftNone, rightNone): self.val val self.left left self.right right # 前序遍历&#xff08;非递归&#xff09; def preorderTraversal(root): if not root: return [] …...

Leetcode 673. 最长递增子序列的个数 C++

673最长递增子序列的个数 给定一个未排序的整数数组 nums &#xff0c; 返回最长递增子序列的个数 。 注意 这个数列必须是 严格 递增的。 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列&#xff0c;分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。 示例 2: 输入: …...

html用css grid实现自适应四宫格放视频

想同时播放四个本地视频&#xff1a; 四宫格&#xff1b;自式应&#xff0c;即放缩浏览器时&#xff0c;四宫格也跟着放缩&#xff1b;尽量填满页面&#xff08;F11 浏览器全屏时可以填满整个屏幕&#xff09;。 在 html 中放视频用 video 标签&#xff0c;参考 [1]&#xff1…...

【机器学习可解释性】5.SHAP值的高级使用

机器学习可解释性 1.模型洞察的价值2.特征重要性排列3.部分依赖图4.SHAP 值5.SHAP值的高级使用 正文 汇总SHAP值以获得更详细的模型解释 总体回顾 我们从学习排列重要性和部分依赖图开始&#xff0c;以显示学习后的模型的内容。 然后我们学习了SHAP值来分解单个预测的组成部…...

CentOS开机自动运行jar程序实现

前面已经有一篇文章介绍jar包如何在CentOS上运行&#xff0c;《在linux上运行jar程序操作记录》 后来发现系统重启后不能自动运行&#xff0c;导致每次都要手动打开&#xff0c;这篇介绍如何自动开机启动运行jar程序。 一、找到JDK程序执行位置 [rootlocalhost /]# which jav…...

matlab双目标定中基线物理长度获取

在MATLAB进行双目摄像机标定时,通常会获得相机的内参,其中包括像素单位的焦距(focal length)以及物理单位的基线长度(baseline)。对于应用中的深度估计和测量,基线长度的物理单位非常重要,因为它直接影响到深度信息的准确性。有时候,您可能只能获取像素单位的焦距和棋…...

自己动手实现一个深度学习算法——二、神经网络的实现

文章目录 1. 神经网络概述1&#xff09;表示2&#xff09;激活函数3&#xff09;sigmoid函数4&#xff09;阶跃函数的实现5&#xff09;sigmoid函数的实现6)sigmoid函数和阶跃函数的比较7&#xff09;非线性函数8&#xff09;ReLU函数 2.三层神经网络的实现1&#xff09;结构2&…...

gRPC源码剖析-Builder模式

一、Builder模式 1、定义 将一个复杂对象的构建与表示分离&#xff0c;使得同样的构建过程可以创建不同的的表示。 2、适用场景 当创建复杂对象的算法应独立于该对象的组成部分以及它们的装配方式时。 当构造过程必须允许被构造的对象有不同的表示时。 说人话&#xff1a…...

ARM传输数据以及移位操作

3.2.2 数据传送指令 LDR/STR指令用来在寄存器和内存之间输送数据。如果我们想要在寄存器之间传送数据&#xff0c;则可以使用MOV指令。MOV指令的格式如下。 MOV {cond} {s}Rd, oprand2 MOV {cond} {s}Rd, oprand2 其中&#xff0c;{cond}为条件指令可选项&#xff0c;{s}用来表…...

06、如何将对象数组里 obj 的 key 值变成动态的(即:每一个对象对应的 key 值都不同)

1、数据情况&#xff1a; 其一、从后端拿到的数据为&#xff1a; let arr [1,3,6,10,11,23,24] 其二、目标数据为&#xff1a; [{vlan_1: 1, value: 1}, {vlan_3: 3, value: 1}, {vlan_6: 6, value: 1}, {vlan_10: 10, value: 1}, {vlan_11: 11, value: 1}, {vlan_23: 23, v…...

ngx_http_request_s

/* 罗剑锋老师的注释参考&#xff1a; https://github.com/chronolaw/annotated_nginx/blob/master/nginx/src/http/ngx_http_request.h */struct ngx_http_request_s {uint32_t signature; /* "HTTP" */ngx_connection_t …...

Docker 学习路线 2:底层技术

了解驱动Docker的核心技术将让您更深入地了解Docker的工作原理&#xff0c;并有助于您更有效地使用该平台。 Linux容器&#xff08;LXC&#xff09; Linux容器&#xff08;LXC&#xff09;是Docker的基础。 LXC是一种轻量级的虚拟化解决方案&#xff0c;允许多个隔离的Linux系…...

UEFI实战——显示图片

一、准备工作 1.1 BMP格式图片 参考:BMP格式详解获取“BMP格式详解”文档里的图片,命名为Logo.bmp将Logo.bmp图片放到U盘里,U盘格式FAT32二、实例代码 2.1 代码结构 TextPkg/ ├── Display.c ├── GetFile.c ├── Test.c ├── Test.dsc ├── Test.h └── Tes…...

Ansible中的playbook

目录 一、playbook简介 二、playbook的语法 三、playbook的核心组件 四、playbook的执行命令 五、vim 设定技巧 六、基本示例 一、playbook简介 1、playbook与ad-hoc相比&#xff0c;是一种完全不同的运用。 2、playbook是一种简单的配置管理系统与多机器部署系统的基础…...

怎样去除视频中的杂音,保留人声部分?

怎样去除视频中的杂音&#xff0c;保留人声部分&#xff1f;这个简单嘛&#xff01;两种办法可以搞定&#xff1a;一是进行音频降噪&#xff0c;把无用的杂音消除掉&#xff1b;二是提取人声&#xff0c;将要保留的人声片段提取出来。 这就将两种实用的办公都分享出来&#xf…...

基于Qt QTreeView|QTreeWidget控件使用简单版

头文件解析: 这是一个C++代码文件,定义了一个名为MainWindow的类。以下是对每一句的详细解释: ```cpp #ifndef MAINWINDOW_H #define MAINWINDOW_H ``` 这是一个条件编译指令,用于避免头文件的重复包含。`MAINWINDOW_H`是一个宏定义,用于唯一标识这个头文件。 ```cpp #…...

edge浏览器的隐藏功能

1. edge://version 查看版本信息 2. edge://flags 特性界面 具体到某一特性&#xff1a;edge://flags/#overlay-scrollbars 3. edge://settings设置界面 详情可参考chrome: 4. edge://extensions 扩展程序页面 5. edge://net-internals 网络事件信息 6. edge://component…...

安卓抓包之小黄鸟

下载安装 下载地址: https://download.csdn.net/download/yijianxiangde100/88496463 安装apk 即可。 证书配置:...

Django中的FBV和CBV

一、两者的区别 1、在我们日常学习Django中&#xff0c;都是用的FBV&#xff08;function base views&#xff09;方式&#xff0c;就是在视图中用函数处理各种请求。而CBV&#xff08;class base view&#xff09;则是通过类来处理请求。 2、Python是一个面向对象的编程语言…...

信息泄露--

大唐电信AC简介 大唐电信科技股份有限公司是电信科学技术研究院&#xff08;大唐电信科技产业集团&#xff09;控股的的高科技企业&#xff0c;大唐电信已形成集成电路设计、软件与应用、终端设计、移动互联网四大产业板块。 大唐电信AC集中管理平台存在弱口令及敏感信息泄漏漏…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...