从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型
从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型
- 一、重写config文件
- 二、开始训练
- 三、ncnn部署
从零开始的目标检测和关键点检测(一):用labelme标注数据集
从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型
一、重写config文件
1、数据集类型即coco格式的数据集,在dataset_info声明classes、keypoint_info(关键点)、skeleton_info(骨架信息)。
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'E:\\pythonproject\\mmdetection\\data\\glue_134_Keypoint\\'# glue关键点检测数据集-元数据
dataset_info = {'dataset_name':'glue_134_Keypoint','classes':'glue','keypoint_info':{0:{'name':'head','id':0,'color':[255,0,0],'type': '','swap': ''},1:{'name':'tail','id':1,'color':[0,255,0],'type': '','swap': ''},},'skeleton_info': {0: {'link':('head','tail'),'id': 0,'color': [100,150,200]},}
}
2、训练参数
# 训练超参数
max_epochs = 200 # 训练 epoch 总数
val_interval = 10 # 每隔多少个 epoch 保存一次权重文件
train_cfg = {'max_epochs': max_epochs, 'val_interval': val_interval}
train_batch_size = 32
val_batch_size = 8
stage2_num_epochs = 20
base_lr = 4e-3
randomness = dict(seed=21)# 优化器
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))# 学习率
param_scheduler = [dict(type='LinearLR', start_factor=1.0e-5, by_epoch=False, begin=0, end=20),dict(# use cosine lr from 210 to 420 epochtype='CosineAnnealingLR',eta_min=base_lr * 0.05,begin=max_epochs // 2,end=max_epochs,T_max=max_epochs // 2,by_epoch=True,convert_to_iter_based=True),
]# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)
3、模型定义、数据预处理、数据加载
详细见源码。
二、开始训练
1、开始训练
python tools/train.py data/glue_134_Keypoint/rtmpose-t-glue.py
2、训练结果
07/27 14:34:07 - mmengine - INFO - Epoch(val) [200][6/6] \
coco/AP: 0.851412 coco/AP .5: 1.000000 coco/AP .75: 1.000000 coco/AP (M): -1.000000 \
coco/AP (L): 0.857120 coco/AR: 0.892683 coco/AR .5: 1.000000 coco/AR .75: 1.000000 \
coco/AR (M): -1.000000 coco/AR (L): 0.892683 \
PCK: 1.000000 AUC: 0.789634 NME: 0.013435 data_time: 0.044700 time: 0.070389
测试一下训练结果
topdown测试 RTMDet + RTMPose
python demo/topdown_demo_with_mmdet.py \E:\\pythonproject\\mmdetection\\data\\glue_134_Keypoint\\rtmdet_tiny_glue.py \E:\\pythonproject\\mmdetection\\work_dirs\\rtmdet_tiny_glue\\best_coco_bbox_mAP_epoch_180.pth \data/glue_134_Keypoint/rtmpose-t-glue.py \work_dirs/rtmpose-t-glue/best_PCK_epoch_90.pth \--input data/glue_134_Keypoint/test_image/img.png \--output-root data/glue_134_Keypoint/test_image/result/ \--device cpu \--bbox-thr 0.5 \--kpt-thr 0.5 \--nms-thr 0.3 \--radius 5 \--thickness 5 \--draw-bbox \--draw-heatmap \--show-kpt-idx

Pose测试 RTMPose,即手动把glue截出来再丢到网络里
python demo/image_demo.py data/glue_134_Keypoint/test_image/img_2.png \data/glue_134_Keypoint/rtmpose-t-glue.py \work_dirs/rtmpose-t-glue/best_PCK_epoch_90.pth \--out-file data/glue_134_Keypoint/test_image/result_2.png \--draw-heatmap

3、训练过程可视化
训练集损失函数

训练集准确率

测试集评估指标

测试集评估指标

三、ncnn部署
在线模型转换:Deploee
上传文件完成在线转换
相关文章:
从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型
从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型 一、重写config文件二、开始训练三、ncnn部署 从零开始的目标检测和关键点检测(一):用labelme标注数据集 从零开始的目标检测和关键点检测…...
Qt6 中弹出消息框,一段时间后自动退出
以下代码功能,弹出模态消息框,然后,等待 3 秒,消息框自动退出 QMessageBox msgbox;msgbox.setText("sleep 3s");QTimer::singleShot(3000, &msgbox, &QMessageBox::close);msgbox.exec();...
elementUI树节点全选,反选,半选状态
// <template>部分 <div class"check-block"><el-divider></el-divider><el-checkbox :indeterminate"indeterminate" v-model"checkAll" change"handleCheckAllChange">全选</el-checkbox><e…...
Kafka、RabbitMQ、RocketMQ中间件的对比
消息中间件现在有不少,网上很多文章都对其做过对比,在这我对其做进一步总结与整理。 RocketMQ 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成…...
Mac 创建并使用 .zshrc 文件
1,打开终端输入指令 touch .zshrc 2,你可能希望将 .bash_profile 文件中的内容复制到 .zshrc 文件中,那建议复制过来。 3,使用 .zshrc 文件 执行以下指令: source .zshrc 注:以后希望使用 .bash_prof…...
Unity3D移动开发如何依据性能选择Shader
前言 在Unity3D移动开发中,选择合适的Shader是非常重要的,它直接影响到游戏的性能和画面效果。本文将介绍如何依据性能选择Shader,并给出相应的技术详解以及代码实现。 对惹,这里有一个游戏开发交流小组,希望大家可以…...
基于stm32F4的智能宠物喂食器的设计:LVGL界面、定时喂食喂水通风
宠物喂食器 一、功能设计二、元器件选型三、UI设计四、原理图设计五、源代码设计六、成品展示 实物链接:https://m.tb.cn/h.5iCUX6H?tkPL65WXCEipQ CZ3457 一、功能设计 1、设计一个触摸屏作为人机交互 2、通过触摸屏设置时间定时喂食喂水通风 3、获取当前水槽的…...
jumpserver堡垒机docker方式安装部署
1、环境要求 请先自行创建 数据库 和 Redis, 版本要求参考上面环境要求说明 mysql>5.7 redis >5.0 2、创建数据库 mysql: create database jumpserver default charset utf8; GRANT ALL PRIVILEGES ON jumpserver.* TO jumpserver% IDENTIFIED BY nu4x599…...
在基于亚马逊云科技的湖仓一体架构上构建数据血缘的探索和实践
背景介绍 随着大数据技术的进步,企业和组织越来越依赖数据驱动的决策。数据的质量、来源及其流动性因此显得非常关键。数据血缘分析为我们提供了一种追踪数据从起点到终点的方法,有助于理解数据如何被转换和消费,同时对数据治理和合规性起到关…...
VScode clangd 插件浏览 linux 源码
文章目录 VScode clangd 插件浏览 linux 源码clangd 安装与配置VScode 插件安装clangd 安装方法一方法二 clangd 配置 cmake 生成bear 生成 compile_commands.json触发 clangd linux 内核脚本生成 compile_commands.json 文件三种方式对比 VScode clangd 插件浏览 linux 源码 …...
GZ035 5G组网与运维赛题第8套
2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第8套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) 子…...
《golang设计模式》第三部分·行为型模式-02-命令模式(Command)
文章目录 1. 概述1.1 角色1.2 类图 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 命令模式(Command)将类的业务行为以对象的方式封装,以便实现行为的参数化、撤销或重做等需求。 非命令模式的困惑: 类的行为在运行时是以实例方法…...
【linux进程控制(一)】进程终止--如何干掉一个进程?
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:Linux从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学更多操作系统知识 🔝🔝 进程终止 1. 前言2. 文章整体…...
言情小说怎么推广?如何推广网络小说?
网络小说是一种文学形式,它的受众群体相当广泛,其实也面临着很强的竞争,因此,网络推广是小说宣传的一项重要工作,这里小马识途营销顾问就分享一下小说推广的渠道和方法。 1、软文推广 在推广小说的过程中,…...
TensorFlow 的应用场景有哪些
TensorFlow是一个开源的人工智能框架,由Google公司开发。它是一个强大的工具,可以用于数值计算、机器学习和深度学习等领域,具有灵活性、可扩展性、可移植性等特点。 TensorFlow的基本概念包括: Tensor:Tensor是Tens…...
JAVA提取嵌套夹带文件之Apache Tika
目录结构 前言tika简介Tika支持的文件格式MAVEN依赖JAVA程序JAVA测试程序测试文件测试结果部分文件提取失败参考连接 前言 Apache Tika提取文件整理如下,如有特定的文件需要提取可以先参照【部分文件提取失败】章节对照,以免浪费您的宝贵时间,…...
SSL数字证书服务
SSL/TLS 证书允许Web浏览器使用安全套接字层/传输层安全 (SSL/TLS) 协议识别并建立与网站的加密网络连接。 SSL数字证书主要功能 SSL证书在浏览器或用户计算机与服务器或网站之间建立加密连接。这种连接可以保护传输中的敏感数据免遭非授权方的拦截,从而使在线交易…...
浅谈安科瑞直流电表在荷兰光伏充电桩系统中的应用
摘要:本文介绍了安科瑞直流电表在荷兰光伏充电桩系统中的应用。主要用于充电桩的电流电压电能的计量。 Abstract: This article introduces the application of Acrel DC meters in PV charging pile system in Netherlands.The device is measuring current,volt…...
淘宝详情API接口怎么实现大数据分析和商品价格监控
一、引言 随着互联网的快速发展,大数据分析和价格监控成为了电商行业的关键环节。淘宝作为中国最大的电商平台之一,其详情API接口提供了丰富的商品信息,为大数据分析和价格监控提供了便利。本文将探讨如何使用淘宝详情API接口实现大数据分析…...
智能政务,办事更轻松!拓世法宝AI智慧政务数字人一体机,重新定义你的政务办理体验!
在构建现代化的政务服务体系中,高效、便捷是最重要的衡量标准。随着信息化技术的发展,很多政务服务已经实现了重要的线上办理,减轻了公民和企业的办事负担,同时也提升了政府部门的服务效率。可是,一些场景下的办事流程…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
