当前位置: 首页 > news >正文

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

  • 一、重写config文件
  • 二、开始训练
  • 三、ncnn部署

从零开始的目标检测和关键点检测(一):用labelme标注数据集

从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

一、重写config文件

1、数据集类型即coco格式的数据集,在dataset_info声明classes、keypoint_info(关键点)、skeleton_info(骨架信息)。

dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'E:\\pythonproject\\mmdetection\\data\\glue_134_Keypoint\\'# glue关键点检测数据集-元数据
dataset_info = {'dataset_name':'glue_134_Keypoint','classes':'glue','keypoint_info':{0:{'name':'head','id':0,'color':[255,0,0],'type': '','swap': ''},1:{'name':'tail','id':1,'color':[0,255,0],'type': '','swap': ''},},'skeleton_info': {0: {'link':('head','tail'),'id': 0,'color': [100,150,200]},}
}

2、训练参数

# 训练超参数
max_epochs = 200 # 训练 epoch 总数
val_interval = 10 # 每隔多少个 epoch 保存一次权重文件
train_cfg = {'max_epochs': max_epochs, 'val_interval': val_interval}
train_batch_size = 32
val_batch_size = 8
stage2_num_epochs = 20
base_lr = 4e-3
randomness = dict(seed=21)# 优化器
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))# 学习率
param_scheduler = [dict(type='LinearLR', start_factor=1.0e-5, by_epoch=False, begin=0, end=20),dict(# use cosine lr from 210 to 420 epochtype='CosineAnnealingLR',eta_min=base_lr * 0.05,begin=max_epochs // 2,end=max_epochs,T_max=max_epochs // 2,by_epoch=True,convert_to_iter_based=True),
]# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)

3、模型定义、数据预处理、数据加载

详细见源码。

二、开始训练

1、开始训练

python tools/train.py data/glue_134_Keypoint/rtmpose-t-glue.py

2、训练结果

07/27 14:34:07 - mmengine - INFO - Epoch(val) [200][6/6]    \
coco/AP: 0.851412  coco/AP .5: 1.000000  coco/AP .75: 1.000000  coco/AP (M): -1.000000 \
coco/AP (L): 0.857120  coco/AR: 0.892683  coco/AR .5: 1.000000  coco/AR .75: 1.000000  \
coco/AR (M): -1.000000  coco/AR (L): 0.892683  \
PCK: 1.000000  AUC: 0.789634  NME: 0.013435  data_time: 0.044700  time: 0.070389

测试一下训练结果

topdown测试 RTMDet + RTMPose

python demo/topdown_demo_with_mmdet.py \E:\\pythonproject\\mmdetection\\data\\glue_134_Keypoint\\rtmdet_tiny_glue.py \E:\\pythonproject\\mmdetection\\work_dirs\\rtmdet_tiny_glue\\best_coco_bbox_mAP_epoch_180.pth \data/glue_134_Keypoint/rtmpose-t-glue.py \work_dirs/rtmpose-t-glue/best_PCK_epoch_90.pth \--input data/glue_134_Keypoint/test_image/img.png \--output-root data/glue_134_Keypoint/test_image/result/ \--device cpu \--bbox-thr 0.5 \--kpt-thr 0.5 \--nms-thr 0.3 \--radius 5 \--thickness 5 \--draw-bbox  \--draw-heatmap \--show-kpt-idx

在这里插入图片描述
Pose测试 RTMPose,即手动把glue截出来再丢到网络里

python demo/image_demo.py data/glue_134_Keypoint/test_image/img_2.png \data/glue_134_Keypoint/rtmpose-t-glue.py \work_dirs/rtmpose-t-glue/best_PCK_epoch_90.pth \--out-file data/glue_134_Keypoint/test_image/result_2.png \--draw-heatmap

在这里插入图片描述
3、训练过程可视化

训练集损失函数

在这里插入图片描述

训练集准确率

在这里插入图片描述

测试集评估指标

在这里插入图片描述

测试集评估指标

在这里插入图片描述

三、ncnn部署

在线模型转换:Deploee

上传文件完成在线转换

相关文章:

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型 一、重写config文件二、开始训练三、ncnn部署 从零开始的目标检测和关键点检测(一):用labelme标注数据集 从零开始的目标检测和关键点检测…...

Qt6 中弹出消息框,一段时间后自动退出

以下代码功能,弹出模态消息框,然后,等待 3 秒,消息框自动退出 QMessageBox msgbox;msgbox.setText("sleep 3s");QTimer::singleShot(3000, &msgbox, &QMessageBox::close);msgbox.exec();...

elementUI树节点全选,反选,半选状态

// <template>部分 <div class"check-block"><el-divider></el-divider><el-checkbox :indeterminate"indeterminate" v-model"checkAll" change"handleCheckAllChange">全选</el-checkbox><e…...

Kafka、RabbitMQ、RocketMQ中间件的对比

消息中间件现在有不少&#xff0c;网上很多文章都对其做过对比&#xff0c;在这我对其做进一步总结与整理。 RocketMQ 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件&#xff0c;使用Mysql作为消息存储媒介&#xff0c;可完全水平扩容&#xff0c;为了进一步降低成…...

Mac 创建并使用 .zshrc 文件

1&#xff0c;打开终端输入指令 touch .zshrc 2&#xff0c;你可能希望将 .bash_profile 文件中的内容复制到 .zshrc 文件中&#xff0c;那建议复制过来。 3&#xff0c;使用 .zshrc 文件 执行以下指令&#xff1a; source .zshrc 注&#xff1a;以后希望使用 .bash_prof…...

Unity3D移动开发如何依据性能选择Shader

前言 在Unity3D移动开发中&#xff0c;选择合适的Shader是非常重要的&#xff0c;它直接影响到游戏的性能和画面效果。本文将介绍如何依据性能选择Shader&#xff0c;并给出相应的技术详解以及代码实现。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff0c;希望大家可以…...

基于stm32F4的智能宠物喂食器的设计:LVGL界面、定时喂食喂水通风

宠物喂食器 一、功能设计二、元器件选型三、UI设计四、原理图设计五、源代码设计六、成品展示 实物链接&#xff1a;https://m.tb.cn/h.5iCUX6H?tkPL65WXCEipQ CZ3457 一、功能设计 1、设计一个触摸屏作为人机交互 2、通过触摸屏设置时间定时喂食喂水通风 3、获取当前水槽的…...

jumpserver堡垒机docker方式安装部署

1、环境要求 请先自行创建 数据库 和 Redis, 版本要求参考上面环境要求说明 mysql>5.7 redis >5.0 2、创建数据库 mysql&#xff1a; create database jumpserver default charset utf8; GRANT ALL PRIVILEGES ON jumpserver.* TO jumpserver% IDENTIFIED BY nu4x599…...

在基于亚马逊云科技的湖仓一体架构上构建数据血缘的探索和实践

背景介绍 随着大数据技术的进步&#xff0c;企业和组织越来越依赖数据驱动的决策。数据的质量、来源及其流动性因此显得非常关键。数据血缘分析为我们提供了一种追踪数据从起点到终点的方法&#xff0c;有助于理解数据如何被转换和消费&#xff0c;同时对数据治理和合规性起到关…...

VScode clangd 插件浏览 linux 源码

文章目录 VScode clangd 插件浏览 linux 源码clangd 安装与配置VScode 插件安装clangd 安装方法一方法二 clangd 配置 cmake 生成bear 生成 compile_commands.json触发 clangd linux 内核脚本生成 compile_commands.json 文件三种方式对比 VScode clangd 插件浏览 linux 源码 …...

GZ035 5G组网与运维赛题第8套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项&#xff08;高职组&#xff09; 赛题第8套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通&#xff08;35分&#xff09; 子任务1&#xff1a;5G公共网络部署与调试&#xff08;15分&#xff09; 子…...

《golang设计模式》第三部分·行为型模式-02-命令模式(Command)

文章目录 1. 概述1.1 角色1.2 类图 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 命令模式&#xff08;Command&#xff09;将类的业务行为以对象的方式封装&#xff0c;以便实现行为的参数化、撤销或重做等需求。 非命令模式的困惑&#xff1a; 类的行为在运行时是以实例方法…...

【linux进程控制(一)】进程终止--如何干掉一个进程?

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; 进程终止 1. 前言2. 文章整体…...

言情小说怎么推广?如何推广网络小说?

网络小说是一种文学形式&#xff0c;它的受众群体相当广泛&#xff0c;其实也面临着很强的竞争&#xff0c;因此&#xff0c;网络推广是小说宣传的一项重要工作&#xff0c;这里小马识途营销顾问就分享一下小说推广的渠道和方法。 1、软文推广 在推广小说的过程中&#xff0c;…...

TensorFlow 的应用场景有哪些

TensorFlow是一个开源的人工智能框架&#xff0c;由Google公司开发。它是一个强大的工具&#xff0c;可以用于数值计算、机器学习和深度学习等领域&#xff0c;具有灵活性、可扩展性、可移植性等特点。 TensorFlow的基本概念包括&#xff1a; Tensor&#xff1a;Tensor是Tens…...

JAVA提取嵌套夹带文件之Apache Tika

目录结构 前言tika简介Tika支持的文件格式MAVEN依赖JAVA程序JAVA测试程序测试文件测试结果部分文件提取失败参考连接 前言 Apache Tika提取文件整理如下&#xff0c;如有特定的文件需要提取可以先参照【部分文件提取失败】章节对照&#xff0c;以免浪费您的宝贵时间&#xff0c…...

SSL数字证书服务

SSL/TLS 证书允许Web浏览器使用安全套接字层/传输层安全 (SSL/TLS) 协议识别并建立与网站的加密网络连接。 SSL数字证书主要功能 SSL证书在浏览器或用户计算机与服务器或网站之间建立加密连接。这种连接可以保护传输中的敏感数据免遭非授权方的拦截&#xff0c;从而使在线交易…...

浅谈安科瑞直流电表在荷兰光伏充电桩系统中的应用

摘要&#xff1a;本文介绍了安科瑞直流电表在荷兰光伏充电桩系统中的应用。主要用于充电桩的电流电压电能的计量。 Abstract: This article introduces the application of Acrel DC meters in PV charging pile system in Netherlands.The device is measuring current,volt…...

淘宝详情API接口怎么实现大数据分析和商品价格监控

一、引言 随着互联网的快速发展&#xff0c;大数据分析和价格监控成为了电商行业的关键环节。淘宝作为中国最大的电商平台之一&#xff0c;其详情API接口提供了丰富的商品信息&#xff0c;为大数据分析和价格监控提供了便利。本文将探讨如何使用淘宝详情API接口实现大数据分析…...

智能政务,办事更轻松!拓世法宝AI智慧政务数字人一体机,重新定义你的政务办理体验!

在构建现代化的政务服务体系中&#xff0c;高效、便捷是最重要的衡量标准。随着信息化技术的发展&#xff0c;很多政务服务已经实现了重要的线上办理&#xff0c;减轻了公民和企业的办事负担&#xff0c;同时也提升了政府部门的服务效率。可是&#xff0c;一些场景下的办事流程…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...