当前位置: 首页 > news >正文

Flink 统计接入的数据量-滚动窗口和状态的使用

1、概述

在生产场景值,经常需要和上游、下游对数,离线场景可以直接 group by 再 count ,但是实时场景中,如果使用 kafka 作为中间件,中间经过几个 job 的过滤转化后,再对照像 Doris 或 Clickhouse 中最终层的数据,如果出现缺失,很难判断是哪一层缺失的。

2、使用 侧流输出+处理时间的滚动窗口+状态进行数据量级统计

package com.flink.feature.windowcount;import org.apache.flink.api.common.state.MapState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;/*** 1、先输入数据* 1* 1* 1* 1* 输出结果* main=>:8> 业务处理=>1* main=>:1> 业务处理=>1* main=>:2> 业务处理=>1* main=>:3> 业务处理=>1* 每10秒每个key接受到的数据量=>:2> (1698913020000,1698913030000,窗口统计=>1,4)** 2、再输入数据* 1* 2* 2* 3* 3* 4* 4* 输出结果* main=>:4> 业务处理=>1* main=>:5> 业务处理=>2* main=>:6> 业务处理=>2* main=>:7> 业务处理=>3* main=>:8> 业务处理=>3* main=>:1> 业务处理=>4* main=>:2> 业务处理=>4* 每10秒每个key接受到的数据量=>:2> (1698913030000,1698913040000,窗口统计=>1,1)* 每10秒每个key接受到的数据量=>:7> (1698913030000,1698913040000,窗口统计=>4,2)* 每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>2,2)* 每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>3,2)*/public class UseWindowValidateData {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();OutputTag<Tuple2<String,Integer>> windowCountTag = new OutputTag<Tuple2<String,Integer>>("window_count"){};DataStreamSource<String> source = env.socketTextStream("localhost", 8888);SingleOutputStreamOperator<String> process = source.process(new ProcessFunction<String, String>() {@Overridepublic void processElement(String input, ProcessFunction<String, String>.Context ctx, Collector<String> collector) throws Exception {ctx.output(windowCountTag,new Tuple2<>("窗口统计=>"+input,1));collector.collect("业务处理=>" + input);}});process.getSideOutput(windowCountTag).keyBy(new KeySelector<Tuple2<String,Integer>, String>() {@Overridepublic String getKey(Tuple2<String,Integer> tp) throws Exception {return tp.f0;}}).window(TumblingProcessingTimeWindows.of(Time.seconds(10))).process(new ProcessWindowFunction<Tuple2<String, Integer>, Tuple4<String,String,String,Integer>, String, TimeWindow>() {private MapState<String, Integer> mapState;@Overridepublic void open(Configuration parameters) throws Exception {MapStateDescriptor<String, Integer> stateDescriptor = new MapStateDescriptor<>("map-state", String.class, Integer.class);mapState = getRuntimeContext().getMapState(stateDescriptor);}@Overridepublic void process(String key, ProcessWindowFunction<Tuple2<String, Integer>, Tuple4<String, String, String, Integer>, String, TimeWindow>.Context ctx, Iterable<Tuple2<String, Integer>> elements, Collector<Tuple4<String, String, String, Integer>> out) throws Exception {for (Tuple2<String, Integer> tp : elements) {Integer res = mapState.get(tp.f0);if (res == null) {res = 0;}res += 1;mapState.put(tp.f0, res);}out.collect(new Tuple4<>(String.valueOf(ctx.window().getStart()),String.valueOf(ctx.window().getEnd()),key,mapState.get(key)));// 每个窗口计算后清空状态mapState.clear();}}).print("每10秒每个key接受到的数据量=>");process.print("main=>");env.execute();}
}

3、测试结果

1)先输入数据

1
1
1
1

输出结果

main=>:8> 业务处理=>1
main=>:1> 业务处理=>1
main=>:2> 业务处理=>1
main=>:3> 业务处理=>1

每10秒每个key接受到的数据量=>:2> (1698913020000,1698913030000,窗口统计=>1,4)

2)再输入数据

1
2
2
3
3
4
4

输出结果

main=>:4> 业务处理=>1
main=>:5> 业务处理=>2
main=>:6> 业务处理=>2
main=>:7> 业务处理=>3
main=>:8> 业务处理=>3
main=>:1> 业务处理=>4
main=>:2> 业务处理=>4

每10秒每个key接受到的数据量=>:2> (1698913030000,1698913040000,窗口统计=>1,1)
每10秒每个key接受到的数据量=>:7> (1698913030000,1698913040000,窗口统计=>4,2)
每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>2,2)
每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>3,2)

相关文章:

Flink 统计接入的数据量-滚动窗口和状态的使用

1、概述 在生产场景值&#xff0c;经常需要和上游、下游对数&#xff0c;离线场景可以直接 group by 再 count &#xff0c;但是实时场景中&#xff0c;如果使用 kafka 作为中间件&#xff0c;中间经过几个 job 的过滤转化后&#xff0c;再对照像 Doris 或 Clickhouse 中最终层…...

SpringBoot快速整合canal1.1.5(TCP模式)

SpringBoot快速整合canal1.1.5&#xff08;TCP模式&#xff09; 安装并配置MySQL主从⭐ 1&#xff1a;Docker安装MySQL8.0.28 docker pull mysql:8.0.282&#xff1a;创建目录&#xff1a; mkdir -p /usr/local/mysql8/data mkdir -p /usr/local/mysql8/log mkdir -p /usr/…...

docker打包container成image,然后将image上传到docker hub

第一步&#xff1a;停止正在运行的容器 docker stop <container_name> eg: docker stop xuanjie_mlir 第二步&#xff1a;将对应的container打包成image docker commit <container_id> <镜像名&#xff1a;版本> eg&#xff1a;docker commit 005672e6d97a…...

设计模式—创建型模式之原型模式

设计模式—创建型模式之原型模式 原型模式&#xff08;Prototype Pattern&#xff09;用于创建重复的对象&#xff0c;同时又能保证性能。 本体给外部提供一个克隆体进行使用。 比如我们做一个SjdwzMybatis&#xff0c;用来操作数据库&#xff0c;从数据库里面查出很多记录&…...

Zygote进程通信为什么用Socket而不是Binder?

Zygote进程是Android系统中的一个特殊进程&#xff0c;它在系统启动时被创建&#xff0c;并负责孵化其他应用进程。它的主要作用是预加载和共享应用进程的资源&#xff0c;以提高应用启动的速度。 在Android系统中&#xff0c;常用的进程通信方式有以下几种&#xff1a; Intent…...

API接口加密,解决自动化中登录问题

一、加密方式 AES&#xff1a;对称加密&#xff0c;快RAS&#xff1a;非对称加密&#xff0c;慢AESRAS&#xff1a;安全高效 加密过程&#xff1a;字符串》字节流》加密的字节流&#xff08;算法&#xff09;&#xff0c;解密有可能出现乱码&#xff0c;所以不能直接转成字符…...

COCOS2DX3.17.2 Android升级targetSDK30问题解决方案

一、luajit不兼容问题 不兼容版本&#xff1a;【2.1.0-bate2、2.1.0-bate3都存在异常】 出问题系统&#xff1a;Android11&#xff1b;Android10的系统部分机型有问题&#xff0c;部分机型正常 异常点1&#xff1a;c调用lua接口&#xff0c;pushObjiect的时候crash 异常点2…...

HarmonyOS鸿蒙原生应用开发设计- 隐私声明

HarmonyOS设计文档中&#xff0c;为大家提供了独特的隐私声明&#xff0c;开发者可以根据需要直接引用。 开发者直接使用官方提供的隐私声明内容&#xff0c;既可以符合HarmonyOS原生应用的开发上架运营规范&#xff0c;又可以防止使用别人的内容产生的侵权意外情况等&#xff…...

【面试精选】00后卷王带你三天刷完软件测试面试八股文

前言 本人普通本科计算机专业&#xff0c;做测试也有3年的时间了&#xff0c;讲下我的经历&#xff0c;我刚毕业就进了一个小自研薪资还不错&#xff0c;有10.5k&#xff08;个人觉得我很优秀&#xff09;&#xff0c;在里面呆了两年&#xff0c;积累了一些的经验和技能&#…...

k-means算法c++实现

计算数据集中的元素与各个簇的中心的距离&#xff0c;将它赋给最近的簇&#xff0c;然后重新计算每个簇的平均值&#xff0c;再将元素按离平均值点最近的原则重新分配直到没有出现重新分配 该算法要事先给出k的值&#xff0c;即划分为几个簇。 vector<int> datoclu(dat…...

oracle查询哪些用户下有表

oracle查询哪些用户下有表,排除系统用户。 在实际业务中 oracle数据库中创建了很多的用户 但实际都是无表的,利用SQL语句将这些有表的用户查询出来 并显示用户名、表名、创建表的时间等信息。 select * from dba_objects where object_type = TABLE and owner not in ( AN…...

机器人连杆惯量参数辨识(估计)

杆的转动惯量的计算公式是Imr^2。在经典力学中&#xff0c;转动惯量&#xff08;又称质量惯性矩&#xff0c;简称惯矩&#xff09;通常以I 或J表示&#xff0c;SI 单位为 kgm。对于一个质点&#xff0c;I mr&#xff0c;其中 m 是其质量&#xff0c;r 是质点和转轴的垂直距离。…...

一座 “数智桥梁”,华为助力“天堑变通途”

《水调歌头游泳》中的一句话&#xff0c;“一桥飞架南北&#xff0c;天堑变通途”&#xff0c;广为人们所熟知&#xff0c;其中展现出的&#xff0c;是中国人对美好出行的无限向往。 天堑变通途从来不易。 中国是当今世界上交通运输最繁忙、最快捷的国家之一&#xff0c;交通行…...

C#知识总结 基础篇(上)

本篇内容参考C#图解教程 本篇内容偏向基础&#xff0c;适合0基础的朋友快速上手&#xff0c;也适合有一定C语言&#xff08;或其他语言如C,java&#xff09;基础的人快速上手C#。同时适合unity引擎的初学者&#xff0c;更加详细的了解C#语言。 本文内容基本涵盖C#基础内容&am…...

照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版 2024年最新中文版下载

照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版是一款功能强大的专业级图像编辑软件&#xff0c;由Serif公司开发。它提供了广泛的工具和功能&#xff0c;适用于摄影师、设计师和艺术家。 照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版软件介绍 TIFF&#…...

TPAMI 2023 | Temporal Perceiver:通用时序边界检测方法

本文介绍一下今年我们组被T-PAMI 2023收录的时序边界检测工作 Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection。​​​​​​​ 论文名称&#xff1a; Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection 论文链接&…...

Unity-UV展开工具

using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEditor;public class unfold : EditorWindow {[MenuItem("Gq_Tools/展开")]public static void ShowWin(){EditorWindow.CreateInstance<unfold>().Show();}priva…...

springboot actuator jvm监控丢失

1、背景 系统接入了监控prometheus和grafana&#xff0c;某天grafana突然发现只有几台机器可以看到指标。 随便点击一个地址http://192.168.0.76:8681/lms/actuator/prometheus访问指标&#xff0c;发现JVM相关指标全部丢失 2、解决方法 从网上查找相关资料&#xff0c;逐一…...

UDP服务端和客户端通信代码开发流程

一、UDP通信 TCP&#xff1a;传输控制协议&#xff0c;面向连接的&#xff0c;稳定的&#xff0c;可靠的&#xff0c;安全的数据集流传递 稳定和可靠:丢包重传 数据有序:序号和确认序号 流量控制:稳定窗口 UDP&#xff1a;用户数据报协议 面向无连接的,不稳定的,不可靠,不安…...

数据库实验:SQL的数据定义与单表查询

目录 实验目的实验内容实验要求实验过程实验步骤实例代码结果示意 数据库的实验&#xff0c;对关系型数据库MySQL进行一些实际的操作 实验目的 (1) 掌握DBMS的数据定义功能 (2) 掌握SQL语言的数据定义语句 (3) 掌握RDBMS的数据单表查询功能 (4) 掌握SQL语言的数据单表查询语句…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...