当前位置: 首页 > news >正文

Flink 统计接入的数据量-滚动窗口和状态的使用

1、概述

在生产场景值,经常需要和上游、下游对数,离线场景可以直接 group by 再 count ,但是实时场景中,如果使用 kafka 作为中间件,中间经过几个 job 的过滤转化后,再对照像 Doris 或 Clickhouse 中最终层的数据,如果出现缺失,很难判断是哪一层缺失的。

2、使用 侧流输出+处理时间的滚动窗口+状态进行数据量级统计

package com.flink.feature.windowcount;import org.apache.flink.api.common.state.MapState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;/*** 1、先输入数据* 1* 1* 1* 1* 输出结果* main=>:8> 业务处理=>1* main=>:1> 业务处理=>1* main=>:2> 业务处理=>1* main=>:3> 业务处理=>1* 每10秒每个key接受到的数据量=>:2> (1698913020000,1698913030000,窗口统计=>1,4)** 2、再输入数据* 1* 2* 2* 3* 3* 4* 4* 输出结果* main=>:4> 业务处理=>1* main=>:5> 业务处理=>2* main=>:6> 业务处理=>2* main=>:7> 业务处理=>3* main=>:8> 业务处理=>3* main=>:1> 业务处理=>4* main=>:2> 业务处理=>4* 每10秒每个key接受到的数据量=>:2> (1698913030000,1698913040000,窗口统计=>1,1)* 每10秒每个key接受到的数据量=>:7> (1698913030000,1698913040000,窗口统计=>4,2)* 每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>2,2)* 每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>3,2)*/public class UseWindowValidateData {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();OutputTag<Tuple2<String,Integer>> windowCountTag = new OutputTag<Tuple2<String,Integer>>("window_count"){};DataStreamSource<String> source = env.socketTextStream("localhost", 8888);SingleOutputStreamOperator<String> process = source.process(new ProcessFunction<String, String>() {@Overridepublic void processElement(String input, ProcessFunction<String, String>.Context ctx, Collector<String> collector) throws Exception {ctx.output(windowCountTag,new Tuple2<>("窗口统计=>"+input,1));collector.collect("业务处理=>" + input);}});process.getSideOutput(windowCountTag).keyBy(new KeySelector<Tuple2<String,Integer>, String>() {@Overridepublic String getKey(Tuple2<String,Integer> tp) throws Exception {return tp.f0;}}).window(TumblingProcessingTimeWindows.of(Time.seconds(10))).process(new ProcessWindowFunction<Tuple2<String, Integer>, Tuple4<String,String,String,Integer>, String, TimeWindow>() {private MapState<String, Integer> mapState;@Overridepublic void open(Configuration parameters) throws Exception {MapStateDescriptor<String, Integer> stateDescriptor = new MapStateDescriptor<>("map-state", String.class, Integer.class);mapState = getRuntimeContext().getMapState(stateDescriptor);}@Overridepublic void process(String key, ProcessWindowFunction<Tuple2<String, Integer>, Tuple4<String, String, String, Integer>, String, TimeWindow>.Context ctx, Iterable<Tuple2<String, Integer>> elements, Collector<Tuple4<String, String, String, Integer>> out) throws Exception {for (Tuple2<String, Integer> tp : elements) {Integer res = mapState.get(tp.f0);if (res == null) {res = 0;}res += 1;mapState.put(tp.f0, res);}out.collect(new Tuple4<>(String.valueOf(ctx.window().getStart()),String.valueOf(ctx.window().getEnd()),key,mapState.get(key)));// 每个窗口计算后清空状态mapState.clear();}}).print("每10秒每个key接受到的数据量=>");process.print("main=>");env.execute();}
}

3、测试结果

1)先输入数据

1
1
1
1

输出结果

main=>:8> 业务处理=>1
main=>:1> 业务处理=>1
main=>:2> 业务处理=>1
main=>:3> 业务处理=>1

每10秒每个key接受到的数据量=>:2> (1698913020000,1698913030000,窗口统计=>1,4)

2)再输入数据

1
2
2
3
3
4
4

输出结果

main=>:4> 业务处理=>1
main=>:5> 业务处理=>2
main=>:6> 业务处理=>2
main=>:7> 业务处理=>3
main=>:8> 业务处理=>3
main=>:1> 业务处理=>4
main=>:2> 业务处理=>4

每10秒每个key接受到的数据量=>:2> (1698913030000,1698913040000,窗口统计=>1,1)
每10秒每个key接受到的数据量=>:7> (1698913030000,1698913040000,窗口统计=>4,2)
每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>2,2)
每10秒每个key接受到的数据量=>:6> (1698913030000,1698913040000,窗口统计=>3,2)

相关文章:

Flink 统计接入的数据量-滚动窗口和状态的使用

1、概述 在生产场景值&#xff0c;经常需要和上游、下游对数&#xff0c;离线场景可以直接 group by 再 count &#xff0c;但是实时场景中&#xff0c;如果使用 kafka 作为中间件&#xff0c;中间经过几个 job 的过滤转化后&#xff0c;再对照像 Doris 或 Clickhouse 中最终层…...

SpringBoot快速整合canal1.1.5(TCP模式)

SpringBoot快速整合canal1.1.5&#xff08;TCP模式&#xff09; 安装并配置MySQL主从⭐ 1&#xff1a;Docker安装MySQL8.0.28 docker pull mysql:8.0.282&#xff1a;创建目录&#xff1a; mkdir -p /usr/local/mysql8/data mkdir -p /usr/local/mysql8/log mkdir -p /usr/…...

docker打包container成image,然后将image上传到docker hub

第一步&#xff1a;停止正在运行的容器 docker stop <container_name> eg: docker stop xuanjie_mlir 第二步&#xff1a;将对应的container打包成image docker commit <container_id> <镜像名&#xff1a;版本> eg&#xff1a;docker commit 005672e6d97a…...

设计模式—创建型模式之原型模式

设计模式—创建型模式之原型模式 原型模式&#xff08;Prototype Pattern&#xff09;用于创建重复的对象&#xff0c;同时又能保证性能。 本体给外部提供一个克隆体进行使用。 比如我们做一个SjdwzMybatis&#xff0c;用来操作数据库&#xff0c;从数据库里面查出很多记录&…...

Zygote进程通信为什么用Socket而不是Binder?

Zygote进程是Android系统中的一个特殊进程&#xff0c;它在系统启动时被创建&#xff0c;并负责孵化其他应用进程。它的主要作用是预加载和共享应用进程的资源&#xff0c;以提高应用启动的速度。 在Android系统中&#xff0c;常用的进程通信方式有以下几种&#xff1a; Intent…...

API接口加密,解决自动化中登录问题

一、加密方式 AES&#xff1a;对称加密&#xff0c;快RAS&#xff1a;非对称加密&#xff0c;慢AESRAS&#xff1a;安全高效 加密过程&#xff1a;字符串》字节流》加密的字节流&#xff08;算法&#xff09;&#xff0c;解密有可能出现乱码&#xff0c;所以不能直接转成字符…...

COCOS2DX3.17.2 Android升级targetSDK30问题解决方案

一、luajit不兼容问题 不兼容版本&#xff1a;【2.1.0-bate2、2.1.0-bate3都存在异常】 出问题系统&#xff1a;Android11&#xff1b;Android10的系统部分机型有问题&#xff0c;部分机型正常 异常点1&#xff1a;c调用lua接口&#xff0c;pushObjiect的时候crash 异常点2…...

HarmonyOS鸿蒙原生应用开发设计- 隐私声明

HarmonyOS设计文档中&#xff0c;为大家提供了独特的隐私声明&#xff0c;开发者可以根据需要直接引用。 开发者直接使用官方提供的隐私声明内容&#xff0c;既可以符合HarmonyOS原生应用的开发上架运营规范&#xff0c;又可以防止使用别人的内容产生的侵权意外情况等&#xff…...

【面试精选】00后卷王带你三天刷完软件测试面试八股文

前言 本人普通本科计算机专业&#xff0c;做测试也有3年的时间了&#xff0c;讲下我的经历&#xff0c;我刚毕业就进了一个小自研薪资还不错&#xff0c;有10.5k&#xff08;个人觉得我很优秀&#xff09;&#xff0c;在里面呆了两年&#xff0c;积累了一些的经验和技能&#…...

k-means算法c++实现

计算数据集中的元素与各个簇的中心的距离&#xff0c;将它赋给最近的簇&#xff0c;然后重新计算每个簇的平均值&#xff0c;再将元素按离平均值点最近的原则重新分配直到没有出现重新分配 该算法要事先给出k的值&#xff0c;即划分为几个簇。 vector<int> datoclu(dat…...

oracle查询哪些用户下有表

oracle查询哪些用户下有表,排除系统用户。 在实际业务中 oracle数据库中创建了很多的用户 但实际都是无表的,利用SQL语句将这些有表的用户查询出来 并显示用户名、表名、创建表的时间等信息。 select * from dba_objects where object_type = TABLE and owner not in ( AN…...

机器人连杆惯量参数辨识(估计)

杆的转动惯量的计算公式是Imr^2。在经典力学中&#xff0c;转动惯量&#xff08;又称质量惯性矩&#xff0c;简称惯矩&#xff09;通常以I 或J表示&#xff0c;SI 单位为 kgm。对于一个质点&#xff0c;I mr&#xff0c;其中 m 是其质量&#xff0c;r 是质点和转轴的垂直距离。…...

一座 “数智桥梁”,华为助力“天堑变通途”

《水调歌头游泳》中的一句话&#xff0c;“一桥飞架南北&#xff0c;天堑变通途”&#xff0c;广为人们所熟知&#xff0c;其中展现出的&#xff0c;是中国人对美好出行的无限向往。 天堑变通途从来不易。 中国是当今世界上交通运输最繁忙、最快捷的国家之一&#xff0c;交通行…...

C#知识总结 基础篇(上)

本篇内容参考C#图解教程 本篇内容偏向基础&#xff0c;适合0基础的朋友快速上手&#xff0c;也适合有一定C语言&#xff08;或其他语言如C,java&#xff09;基础的人快速上手C#。同时适合unity引擎的初学者&#xff0c;更加详细的了解C#语言。 本文内容基本涵盖C#基础内容&am…...

照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版 2024年最新中文版下载

照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版是一款功能强大的专业级图像编辑软件&#xff0c;由Serif公司开发。它提供了广泛的工具和功能&#xff0c;适用于摄影师、设计师和艺术家。 照片编辑软件Affinity Photo 2 for Mac v2.1.1中文激活版软件介绍 TIFF&#…...

TPAMI 2023 | Temporal Perceiver:通用时序边界检测方法

本文介绍一下今年我们组被T-PAMI 2023收录的时序边界检测工作 Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection。​​​​​​​ 论文名称&#xff1a; Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection 论文链接&…...

Unity-UV展开工具

using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEditor;public class unfold : EditorWindow {[MenuItem("Gq_Tools/展开")]public static void ShowWin(){EditorWindow.CreateInstance<unfold>().Show();}priva…...

springboot actuator jvm监控丢失

1、背景 系统接入了监控prometheus和grafana&#xff0c;某天grafana突然发现只有几台机器可以看到指标。 随便点击一个地址http://192.168.0.76:8681/lms/actuator/prometheus访问指标&#xff0c;发现JVM相关指标全部丢失 2、解决方法 从网上查找相关资料&#xff0c;逐一…...

UDP服务端和客户端通信代码开发流程

一、UDP通信 TCP&#xff1a;传输控制协议&#xff0c;面向连接的&#xff0c;稳定的&#xff0c;可靠的&#xff0c;安全的数据集流传递 稳定和可靠:丢包重传 数据有序:序号和确认序号 流量控制:稳定窗口 UDP&#xff1a;用户数据报协议 面向无连接的,不稳定的,不可靠,不安…...

数据库实验:SQL的数据定义与单表查询

目录 实验目的实验内容实验要求实验过程实验步骤实例代码结果示意 数据库的实验&#xff0c;对关系型数据库MySQL进行一些实际的操作 实验目的 (1) 掌握DBMS的数据定义功能 (2) 掌握SQL语言的数据定义语句 (3) 掌握RDBMS的数据单表查询功能 (4) 掌握SQL语言的数据单表查询语句…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

深度解析云存储:概念、架构与应用实践

在数据爆炸式增长的时代&#xff0c;传统本地存储因容量限制、管理复杂等问题&#xff0c;已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性&#xff0c;成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理&#xff0c;云存储正重塑数据存储与…...

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

一、研究背景与创新点 (一)现有方法的局限性 当前智驾系统面临两大核心挑战:一是长尾问题,即系统在遇到新场景时可能失效,例如突发交通状况或非常规道路环境;二是可解释性问题,传统方法无法解释智驾系统的决策过程,用户难以理解车辆行为的依据。传统语言模型(如 BERT…...