当前位置: 首页 > news >正文

ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)

环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn

Anaconda安装

参考:

https://blog.csdn.net/weixin_46947765/article/details/130980957

opencv4.8.0编译安装


一键编译shell脚本

VERSION=4.8.0test -e ${VERSION}.zip || wget https://github.com/opencv/opencv/archive/refs/tags/${VERSION}.zip
test -e opencv-${VERSION} || unzip ${VERSION}.ziptest -e opencv_extra_${VERSION}.zip || wget -O opencv_extra_${VERSION}.zip https://github.com/opencv/opencv_contrib/archive/refs/tags/${VERSION}.zip
test -e opencv_contrib-${VERSION} || unzip opencv_extra_${VERSION}.zipcd opencv-${VERSION}
mkdir build
cd buildcmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv-4.8.0 \
-D WITH_TBB=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D WITH_CUBLAS=1 \
-D WITH_CUDA=ON \
-D BUILD_opencv_cudacodec=ON \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_QT=OFF \
-D WITH_OPENGL=ON \
-D BUILD_opencv_apps=OFF \
-D BUILD_opencv_python2=OFF \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_PC_FILE_NAME=opencv.pc \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-${VERSION}/modules \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D INSTALL_C_EXAMPLES=OFF \
-D BUILD_EXAMPLES=OFF \
-D CUDA_ARCH_BIN=7.5 \
-D WITH_FFMPEG=ON \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include \
-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so \
..make -j8
sudo make -j8 install

环境设置:

打开主目录下的 .bashrc文件添加如下路径,例如我的.bashrc文件在/home/lu/下。export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/opencv-4.8.0/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/opencv-4.8.0/lib 终端运行:source ~/.bashrc

如果报错:

# 报错:
terminate called after throwing an instance of 'cv::Exception'what():  OpenCV(4.8.0) /media/lu/workspace/WorkSpace/visual_studio/YOLOv8-TensorRT-CPP/libs/tensorrt-cpp-api/scripts/opencv_contrib-4.8.0/modules/cudev/include/opencv2/cudev/grid/detail/transform.hpp:264: error: (-217:Gpu API call) no kernel image is available for execution on the device in function 'call'
已放弃 (核心已转储)# 或者error: (-216:No CUDA support) OpenCV was not built to work with the selected device. Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration. in function 'initCUDABackend'

可能是编译opencv的时候指定的算力和显卡算力不一致导致的,可参考:

Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration错误解决-CSDN博客


 

查看算力可参考下面文章:

Pytorch查看torch版本,查看torchvision版本,查看CUDA版本,查看cudnn版本,查看pytorch可用性,查看cuda可用性,查看cudnn可用性,查看显卡,指定运算GPU_C系语言的博客-CSDN博客
 

相关文章:

ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)

环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn Anaconda安装 参考: https://blog.csdn.net/weixin_46947765/article/details/130980957 opencv4.8.0编译安装 一键编译shell脚本 VERSION4.8.0test -e ${VERSION}.zip || wget http…...

Linux 目录

目录 1. Linux 目录1.1. 目录 /usr/bin 和 /usr/local/bin 区别 1. Linux 目录 1.1. 目录 /usr/bin 和 /usr/local/bin 区别 /usr/bin 下面的都是系统预装的可执行程序, 系统升级有可能会被覆盖。/usr/local/bin 目录是给用户放置自己的可执行程序。...

Linux shell编程学习笔记21:用select in循环语句打造菜单

一、select in循环语句的功能 Linux shell脚本编程提供了select in语句,这是 Shell 独有的一种循环语句,非常适合终端(Terminal)这样的交互场景,它可以根据用户的设置显示出带编号的菜单,用户通过输入不同…...

线性回归与线性拟合的原理、推导与算法实现

关于回归和拟合,从它们的求解过程以及结果来看,两者似乎没有太大差别,事实也的确如此。从本质上说,回归属于数理统计问题,研究解释变量与响应变量之间的关系以及相关性等问题。而拟合是把平面的一系列点,用…...

【C++】set和multiset

文章目录 关联式容器键值对一、set介绍二、set的使用multiset 关联式容器 STL中的部分容器,比如:vector、list、deque、forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元…...

二十、泛型(1)

本章概要 基本概念 与 C 的比较 简单泛型 一个元组类库一个堆栈类RandomList 基本概念 普通的类和方法只能使用特定的类型:基本数据类型或类类型。如果编写的代码需要应用于多种类型,这种严苛的限制对代码的束缚就会很大。 多态是一种面向对象思想的泛…...

【Unity数据交互】游戏中常用到的Json序列化

ˊˊ 👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏&#xff1…...

TCP的滑动窗口和拥塞控制

目录 滑动窗口 1.发送窗口和接收窗口 2.滑动窗口的分类 停止等待协议:发送窗口大小 1, 接收窗口大小 1 后退N帧协议(GBN):发送窗口大小 > 1,接收窗口大小 1 选择重传协议(SR&#xf…...

零信任网络:一种全新的网络安全架构

随着网络技术的不断发展,网络安全问题日益凸显。传统的网络安全策略往往基于信任和验证,但这种信任策略存在一定的局限性。为了解决这一问题,零信任网络作为一种全新的网络安全架构,逐渐受到人们的关注。本文将对零信任网络的概念…...

基于单片机的智能拐杖软件设计

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 技术交流认准下方 CSDN 官方提供的联系方式 文章目录 概要 一、整体设计方案2.1本设计设计原理2.1.1单片机基本介绍 二、本设计方案选择三、软件设计AD原理图:原理图…...

小程序如何设置自动预约快递

小程序通过设置自动预约功能,可以实现自动将订单信息发送给快递公司,快递公司可以自动上门取件。下面具体介绍如何设置。 在小程序管理员后台->配送设置处,选择首选配送公司。为了能够支持自动预约快递,请选择正常的快递公司&…...

STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式)

STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式) 一、所用材料: STM32F103C6T6最小系统板 STM32CUBEMX(HAL库软件) MDK5 示波器或者逻辑分析仪 二、所学内容: 通过定时器TIM的输出比较模式得到预…...

【数据结构】深入浅出讲解计数排序【图文详解,搞懂计数排序这一篇就够了】

计数排序 前言一、计数排序算法核心思路映射 概念补充绝对映射相对映射 二、计数排序算法核心实现步骤三、码源详解四、效率分析(1)时间复杂度 — O(Max(N,range))(2)空间…...

Canvas制作喷泉效果示例

Canvas能制作出很多动画效果&#xff0c;下面是一个制作喷泉效果的示例 效果图 源代码 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <meta name"viewport" content"widthdevice-width, initial-scale1 ,user-…...

什么是NPM(Node Package Manager)?它的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

oracle如果不适用toad或者plsql工具如何获取索引建表语句

select dbms_lob.substr(dbms_metadata.get_ddl(INDEX,INDEX_NAME,DIXON))||; from dba_indexes where ownerDIXON这个语句可以获取dixon用户的所有索引创建语句&#xff0c;sql脚本形式呈现 点开一个语句查看 如果不使用dbms_lob.substr这个函数最后得到是一个clob selec…...

某大厂伺服驱动器量产方案

本文介一款大厂量产伺服驱动器方案&#xff01;带2500线省线式编码器&#xff0c;17位增量编码器&#xff0c;20位绝对值编码器&#xff01;标配CANopen、高精度运动控制&#xff0c;高速总线通讯&#xff0c;主芯片28335FPGA&#xff0c;已验证过&#xff0c;带can和485通讯&a…...

【计算机网络】网络层:数据平面

一.网络层概述 每台路由器的数据平面的主要功能时从其输入链路向其输出链路转发数据报&#xff0c;控制平面的主要功能是协调这些本地的每路由转发动作&#xff0c;使得数据报沿着源和目的地主机之间的路由器路径最终进行端到端传送。 网络层不运行运输层和应用层协议。 转发是…...

Path with “WEB-INF“ or “META-INF“: [webapp/WEB-INF/NewFile.html]

2023-11-04 01:03:14.523 WARN 10896 --- [nio-8072-exec-6] o.s.w.s.r.ResourceHttpRequestHandler : Path with "WEB-INF" or "META-INF": [webapp/WEB-INFNewFile.html] spring.mvc.view.prefix:/webapp/WEB-INF/...

百度OCR 接口调用 提示 216101:param image not exist 问题解决

百度提供的文档并没有描述如何解决,例子也是,用工具请求可以通 axios 请求 需要用FormData 传参 let token await getAccessToken() //官网案例那个 请求token// console.log(token, "token");var formData new FormData();// imageBase64 :Base64 图片数据formD…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...