ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)
环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn
Anaconda安装
参考:
https://blog.csdn.net/weixin_46947765/article/details/130980957
opencv4.8.0编译安装
一键编译shell脚本
VERSION=4.8.0test -e ${VERSION}.zip || wget https://github.com/opencv/opencv/archive/refs/tags/${VERSION}.zip
test -e opencv-${VERSION} || unzip ${VERSION}.ziptest -e opencv_extra_${VERSION}.zip || wget -O opencv_extra_${VERSION}.zip https://github.com/opencv/opencv_contrib/archive/refs/tags/${VERSION}.zip
test -e opencv_contrib-${VERSION} || unzip opencv_extra_${VERSION}.zipcd opencv-${VERSION}
mkdir build
cd buildcmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv-4.8.0 \
-D WITH_TBB=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D WITH_CUBLAS=1 \
-D WITH_CUDA=ON \
-D BUILD_opencv_cudacodec=ON \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_QT=OFF \
-D WITH_OPENGL=ON \
-D BUILD_opencv_apps=OFF \
-D BUILD_opencv_python2=OFF \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_PC_FILE_NAME=opencv.pc \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-${VERSION}/modules \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D INSTALL_C_EXAMPLES=OFF \
-D BUILD_EXAMPLES=OFF \
-D CUDA_ARCH_BIN=7.5 \
-D WITH_FFMPEG=ON \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include \
-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so \
..make -j8
sudo make -j8 install
环境设置:
打开主目录下的 .bashrc文件添加如下路径,例如我的.bashrc文件在/home/lu/下。export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/opencv-4.8.0/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/opencv-4.8.0/lib 终端运行:source ~/.bashrc
如果报错:
# 报错:
terminate called after throwing an instance of 'cv::Exception'what(): OpenCV(4.8.0) /media/lu/workspace/WorkSpace/visual_studio/YOLOv8-TensorRT-CPP/libs/tensorrt-cpp-api/scripts/opencv_contrib-4.8.0/modules/cudev/include/opencv2/cudev/grid/detail/transform.hpp:264: error: (-217:Gpu API call) no kernel image is available for execution on the device in function 'call'
已放弃 (核心已转储)# 或者error: (-216:No CUDA support) OpenCV was not built to work with the selected device. Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration. in function 'initCUDABackend'
可能是编译opencv的时候指定的算力和显卡算力不一致导致的,可参考:
Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration错误解决-CSDN博客
查看算力可参考下面文章:
Pytorch查看torch版本,查看torchvision版本,查看CUDA版本,查看cudnn版本,查看pytorch可用性,查看cuda可用性,查看cudnn可用性,查看显卡,指定运算GPU_C系语言的博客-CSDN博客
相关文章:
ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)
环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn Anaconda安装 参考: https://blog.csdn.net/weixin_46947765/article/details/130980957 opencv4.8.0编译安装 一键编译shell脚本 VERSION4.8.0test -e ${VERSION}.zip || wget http…...
Linux 目录
目录 1. Linux 目录1.1. 目录 /usr/bin 和 /usr/local/bin 区别 1. Linux 目录 1.1. 目录 /usr/bin 和 /usr/local/bin 区别 /usr/bin 下面的都是系统预装的可执行程序, 系统升级有可能会被覆盖。/usr/local/bin 目录是给用户放置自己的可执行程序。...
Linux shell编程学习笔记21:用select in循环语句打造菜单
一、select in循环语句的功能 Linux shell脚本编程提供了select in语句,这是 Shell 独有的一种循环语句,非常适合终端(Terminal)这样的交互场景,它可以根据用户的设置显示出带编号的菜单,用户通过输入不同…...
线性回归与线性拟合的原理、推导与算法实现
关于回归和拟合,从它们的求解过程以及结果来看,两者似乎没有太大差别,事实也的确如此。从本质上说,回归属于数理统计问题,研究解释变量与响应变量之间的关系以及相关性等问题。而拟合是把平面的一系列点,用…...
【C++】set和multiset
文章目录 关联式容器键值对一、set介绍二、set的使用multiset 关联式容器 STL中的部分容器,比如:vector、list、deque、forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元…...
二十、泛型(1)
本章概要 基本概念 与 C 的比较 简单泛型 一个元组类库一个堆栈类RandomList 基本概念 普通的类和方法只能使用特定的类型:基本数据类型或类类型。如果编写的代码需要应用于多种类型,这种严苛的限制对代码的束缚就会很大。 多态是一种面向对象思想的泛…...
【Unity数据交互】游戏中常用到的Json序列化
ˊˊ 👨💻个人主页:元宇宙-秩沅 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 秩沅 原创 👨💻 收录于专栏࿱…...
TCP的滑动窗口和拥塞控制
目录 滑动窗口 1.发送窗口和接收窗口 2.滑动窗口的分类 停止等待协议:发送窗口大小 1, 接收窗口大小 1 后退N帧协议(GBN):发送窗口大小 > 1,接收窗口大小 1 选择重传协议(SR…...
零信任网络:一种全新的网络安全架构
随着网络技术的不断发展,网络安全问题日益凸显。传统的网络安全策略往往基于信任和验证,但这种信任策略存在一定的局限性。为了解决这一问题,零信任网络作为一种全新的网络安全架构,逐渐受到人们的关注。本文将对零信任网络的概念…...
基于单片机的智能拐杖软件设计
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 技术交流认准下方 CSDN 官方提供的联系方式 文章目录 概要 一、整体设计方案2.1本设计设计原理2.1.1单片机基本介绍 二、本设计方案选择三、软件设计AD原理图:原理图…...
小程序如何设置自动预约快递
小程序通过设置自动预约功能,可以实现自动将订单信息发送给快递公司,快递公司可以自动上门取件。下面具体介绍如何设置。 在小程序管理员后台->配送设置处,选择首选配送公司。为了能够支持自动预约快递,请选择正常的快递公司&…...
STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式)
STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式) 一、所用材料: STM32F103C6T6最小系统板 STM32CUBEMX(HAL库软件) MDK5 示波器或者逻辑分析仪 二、所学内容: 通过定时器TIM的输出比较模式得到预…...
【数据结构】深入浅出讲解计数排序【图文详解,搞懂计数排序这一篇就够了】
计数排序 前言一、计数排序算法核心思路映射 概念补充绝对映射相对映射 二、计数排序算法核心实现步骤三、码源详解四、效率分析(1)时间复杂度 — O(Max(N,range))(2)空间…...
Canvas制作喷泉效果示例
Canvas能制作出很多动画效果,下面是一个制作喷泉效果的示例 效果图 源代码 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <meta name"viewport" content"widthdevice-width, initial-scale1 ,user-…...
什么是NPM(Node Package Manager)?它的作用是什么?
聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...
oracle如果不适用toad或者plsql工具如何获取索引建表语句
select dbms_lob.substr(dbms_metadata.get_ddl(INDEX,INDEX_NAME,DIXON))||; from dba_indexes where ownerDIXON这个语句可以获取dixon用户的所有索引创建语句,sql脚本形式呈现 点开一个语句查看 如果不使用dbms_lob.substr这个函数最后得到是一个clob selec…...
某大厂伺服驱动器量产方案
本文介一款大厂量产伺服驱动器方案!带2500线省线式编码器,17位增量编码器,20位绝对值编码器!标配CANopen、高精度运动控制,高速总线通讯,主芯片28335FPGA,已验证过,带can和485通讯&a…...
【计算机网络】网络层:数据平面
一.网络层概述 每台路由器的数据平面的主要功能时从其输入链路向其输出链路转发数据报,控制平面的主要功能是协调这些本地的每路由转发动作,使得数据报沿着源和目的地主机之间的路由器路径最终进行端到端传送。 网络层不运行运输层和应用层协议。 转发是…...
Path with “WEB-INF“ or “META-INF“: [webapp/WEB-INF/NewFile.html]
2023-11-04 01:03:14.523 WARN 10896 --- [nio-8072-exec-6] o.s.w.s.r.ResourceHttpRequestHandler : Path with "WEB-INF" or "META-INF": [webapp/WEB-INFNewFile.html] spring.mvc.view.prefix:/webapp/WEB-INF/...
百度OCR 接口调用 提示 216101:param image not exist 问题解决
百度提供的文档并没有描述如何解决,例子也是,用工具请求可以通 axios 请求 需要用FormData 传参 let token await getAccessToken() //官网案例那个 请求token// console.log(token, "token");var formData new FormData();// imageBase64 :Base64 图片数据formD…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
