当前位置: 首页 > news >正文

Flink SQL Over 聚合详解

Over 聚合定义(⽀持 Batch\Streaming):**特殊的滑动窗⼝聚合函数,拿 Over 聚合 与 窗⼝聚合 做对⽐。

窗⼝聚合:不在 group by 中的字段,不能直接在 select 中拿到

Over 聚合:能够保留原始字段

注意: ⽣产环境中,Over 聚合的使⽤场景较少。

**应⽤场景:**计算最近⼀段滑动窗⼝的聚合结果数据。

**实际案例:**查询每个产品最近⼀⼩时订单的⾦额总和:

SELECT order_id,order_time,amount,SUM(amount) OVER (PARTITION BY productORDER BY order_timeRANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW) AS one_hour_prod_amount_sum
FROM Orders

Over 聚合语法如下:

SELECTagg_func(agg_col) OVER ([PARTITION BY col1[, col2, ...]]ORDER BY time_colrange_definition),...
FROM ...

ORDER BY:必须是时间戳列(事件时间、处理时间);

PARTITION BY:标识了聚合窗⼝的聚合粒度,如上述案例是按照 product 进⾏聚合;

range_definition:标识聚合窗⼝的聚合数据范围,在 Flink 中有两种指定数据范围的⽅式。第⼀种为 按照⾏数聚合 ,第⼆种为 按照时间区间聚合 。

1.时间区间聚合

**案例:**输出一个产品最近⼀⼩时数据的 amount 之和。

结果就是最近⼀⼩时数据的 amount 之和。

CREATE TABLE source_table (order_id BIGINT,product BIGINT,amount BIGINT,order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '1','fields.order_id.min' = '1','fields.order_id.max' = '2','fields.amount.min' = '1','fields.amount.max' = '10','fields.product.min' = '1','fields.product.max' = '2'
);CREATE TABLE sink_table (product BIGINT,order_time TIMESTAMP(3),amount BIGINT,one_hour_prod_amount_sum BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT product,order_time,amount,SUM(amount) OVER (PARTITION BY productORDER BY order_time-- 标识统计范围是⼀个 product 的最近 1 ⼩时的数据RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

+I[2, 2021-12-24T22:08:26.583, 7, 73]
+I[2, 2021-12-24T22:08:27.583, 7, 80]
+I[2, 2021-12-24T22:08:28.583, 4, 84]
+I[2, 2021-12-24T22:08:29.584, 7, 91]
+I[2, 2021-12-24T22:08:30.583, 8, 99]
+I[1, 2021-12-24T22:08:31.583, 9, 138]
+I[2, 2021-12-24T22:08:32.584, 6, 105]
+I[1, 2021-12-24T22:08:33.584, 7, 145]
2.⾏数聚合

**案例:**输出一个产品最近 5 ⾏数据的 amount 之和。

CREATE TABLE source_table (order_id BIGINT,product BIGINT,amount BIGINT,order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH ('connector' = 'datagen','rows-per-second' = '1','fields.order_id.min' = '1','fields.order_id.max' = '2','fields.amount.min' = '1','fields.amount.max' = '2','fields.product.min' = '1','fields.product.max' = '2'
);CREATE TABLE sink_table (product BIGINT,order_time TIMESTAMP(3),amount BIGINT,one_hour_prod_amount_sum BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT product,order_time,amount,SUM(amount) OVER (PARTITION BY productORDER BY order_time-- 标识统计范围是⼀个 product 的最近 5 ⾏数据ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

+I[2, 2021-12-24T22:18:19.147, 1, 9]
+I[1, 2021-12-24T22:18:20.147, 2, 11]
+I[1, 2021-12-24T22:18:21.147, 2, 12]
+I[1, 2021-12-24T22:18:22.147, 2, 12]
+I[1, 2021-12-24T22:18:23.148, 2, 12]
+I[1, 2021-12-24T22:18:24.147, 1, 11]
+I[1, 2021-12-24T22:18:25.146, 1, 10]
+I[1, 2021-12-24T22:18:26.147, 1, 9]
+I[2, 2021-12-24T22:18:27.145, 2, 11]
+I[2, 2021-12-24T22:18:28.148, 1, 10]
+I[2, 2021-12-24T22:18:29.145, 2, 10]

在⼀个 SELECT 中有多个聚合窗⼝,简化写法如下:

SELECT order_id,order_time,amount,SUM(amount) OVER w AS sum_amount,AVG(amount) OVER w AS avg_amount
FROM Orders
-- 使⽤下⾯⼦句,定义 Over Window
WINDOW w AS (PARTITION BY productORDER BY order_timeRANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW)

相关文章:

Flink SQL Over 聚合详解

Over 聚合定义(⽀持 Batch\Streaming):**特殊的滑动窗⼝聚合函数,拿 Over 聚合 与 窗⼝聚合 做对⽐。 窗⼝聚合:不在 group by 中的字段,不能直接在 select 中拿到 Over 聚合:能够保留原始字段…...

【鸿蒙软件开发】ArkUI之容器组件Counter(计数器组件)、Flex(弹性布局)

文章目录 前言一、Counter1.1 子组件1.2 接口1.3 属性1.4 事件 1.5 示例代码二、Flex弹性布局到底是什么意思? 2.1 权限列表2.2 子组件2.3 接口参数 2.4 示例代码示例代码1示例代码2 总结 前言 Counter容器组件:计数器组件,提供相应的增加或…...

PyTorch入门学习(十一):神经网络-线性层及其他层介绍

目录 一、简介 二、PyTorch 中的线性层 三、示例:使用线性层构建神经网络 四、常见的其他层 一、简介 神经网络是由多个层组成的,每一层都包含了一组权重和一个激活函数。每层的作用是将输入数据进行变换,从而最终生成输出。线性层是神经…...

农业水土环境与面源污染建模及对农业措施响应

目录 ​专题一 农业水土环境建模概述 专题二 ArcGIS入门 专题三 农业水土环境建模流程 专题四 DEM数据制备流程 专题五 土地利用数据制备流程 专题六 土壤数据制备流程 专题七 气象数据制备流程 专题八 农业措施数据制备流程 专题九 参数率定与结果验证 专题十 模型结…...

回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)

回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图) 目录 回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)效果一览基本介绍程序设计参考资料 效果一览…...

扫地机器人遇瓶颈?科沃斯、石头科技“突围”

曾经,扫地机器人行业也曾有过高光时刻,而如今,扫地机器人已然告别高增长阶段,增速开始放缓。据中怡康零售推总数据显示,2023年上半年,中国扫地机器人市场规模为63.6亿元人民币,同比下滑了0.6%&a…...

基于SSM的防疫信息登记系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…...

VBA将字典按照item的值大小排序key

方法:利用数组交换位置 sub 字典排序() s 0 Dim arr(dic1.keys)将字典key和value存入一个数组中 For Each ke In dic1.keysarr(s) Array(ke, dic1(ke))s s 1 Next进行排序 For i LBound(arr) To UBound(arr) - 1For j i 1 To UBound(arr)If arr(i)(1) >…...

MySQL第四讲·如何正确设置主键?

你好,我是安然无虞。 文章目录 主键:如何正确设置主键?业务字段做主键自增字段做主键手动赋值字段做主键 主键总结 主键:如何正确设置主键? 前面我们在讲解存储的时候,有提到过主键,它可以唯一…...

K8S知识点(三)

(1)环境搭建-环境初始化 Centos的版本是有要求的必须是7.5或以上,否则安装出来的集群是有问题的Node节点可能加入不到集群中来 详细步骤 1.同时连接三台服务器:查看一下版本 是否正确 2.主机名解析,方便节点之间的…...

c语言刷题(9周)(6~10)

输入10个不等的整数创建数组a[10],在数组a中找是否存在整数t。若存在显示找到了及下标位置,若不存在显示error。 题干输入10个不等的整数创建数组a[10],在数组a中找是否存在整数t。若存在显示找到了及下标位置,若不存在显示error…...

SpringBoot集成-阿里云对象存储OSS

文章目录 阿里云 OSS 介绍准备工作SpringBoot 集成 OSS 阿里云 OSS 介绍 阿里云对象存储 OSS (Object Storage Service),是一款海量、安全、低成本、高可靠的云存储服务。使用 OSS,你可以通过网络随时存储和调用包括文本、图片、…...

fastapi-Headers和Cookies

在FastAPI中,Headers是一个特殊的类型,用于处理HTTP请求头(Headers)。Headers允许你接收、访问和修改HTTP请求中的头部信息。 使用Headers,你可以在FastAPI的路由视图中将请求头作为参数接收,并对它们进行…...

云计算的思想、突破、产业实践

文章目录 📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。🌎跑过十五…...

【漏洞复现】Apache_HTTP_2.4.49_路径穿越漏洞(CVE-2021-41773)

感谢互联网提供分享知识与智慧,在法治的社会里,请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞验证方式一 curl方式二 bp抓包 说明内容漏洞编号CVE-2021-41773漏洞名称Apache HTTP 路径穿越漏洞漏…...

AD9371 官方例程 NO-OS 主函数 headless 梳理

AD9371 系列快速入口 AD9371ZCU102 移植到 ZCU106 : AD9371 官方例程构建及单音信号收发 ad9371_tx_jesd -->util_ad9371_xcvr接口映射: AD9371 官方例程之 tx_jesd 与 xcvr接口映射 AD9371 官方例程 时钟间的关系与生成 : AD9371 官方…...

WSL 下载

可以使用单个命令安装运行 WSL 所需的一切内容。 在管理员模式下打开 PowerShell 或 Windows 命令提示符,方法是右键单击并选择“以管理员身份运行”,输入 wsl --install 命令,然后重启计算机。 首先查看可以下载的版本 最后再运行wsl --ins…...

虚拟dom及diff算法之 —— snabbdom

源码:https://github.com/snabbdom/snabbdom 测试环境搭建 npm i -S snabbdom 安装好的node_modules提供了js和ts的代码:build:js代码,src:ts代码 npm i -D webpack5 webpack-cli3 webpack-dev-server3 webpack&#x…...

毅速丨3D打印结合拓扑优化让轻量化制造更容易

轻量化可以减少产品的重量,提高产品的性能和效率,同时减少能源消耗和排放。尤其在航空航天、汽车制造造等行业对轻量化追求更高。当前,随着制造技术的发展,拓扑优化结合3D打印为轻量化制造带来的显著的优势正在逐渐凸显。 首先&am…...

CentOS 7使用RPM包安装MySQL5.7

目标 本文目标是简单介绍如何在CentOS 7上使用RPM包安装MySQL 5.7,然后描述如何调整存储路径datadir。 环境准备 操作系统 —— CentOS 7MySQL版本 —— MySQL 5.7.44 获取MySQL-rpm包 官网下载地址:https://dev.mysql.com/downloads/mysql/5.7.htm…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中&#xff0…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...