【数据结构】初识二叉树(二叉树的入门知识)
初识二叉树
- 一、树概念及结构
- 1、树的概念
- 2、树的相关概念
- 3、树的表示
- 4、树在实际中的运用(表示文件系统的目录树结构)
- 二、二叉树概念及结构
- 1、概念
- 2、特殊的二叉树
- 3、二叉树的性质
- 4、二叉树的存储结构
- 三、结语
一、树概念及结构
1、树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

- 有一个特殊的结点,称为根结点,根节点没有前驱结点。(如A节点)
- 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构

按照定义,上图最上面的的三个结构并不能叫树!
2、树的相关概念

(以下的概念理解即可,不需要强行记忆)
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林
3、树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DateType;
//孩子兄弟表示法
typedef struct TreeNode
{struct TreeNode* _pFristChild; //第一个孩子节点struct TreeNode* _pNextBrother; //下一个兄弟节点DateType _data; //节点中的数据域
}TreeNode;
其结构逻辑如下:

4、树在实际中的运用(表示文件系统的目录树结构)
- Linux系统

- Windows系统

二、二叉树概念及结构
我们了解完树的基本知识后,就要进行到我们学习的重点了——二叉树,在实际应用中我们的树用的不是很多,用到最多的便是二叉树了,因此对于二叉树我们必须重点掌握!!!
1、概念
一棵二叉树是结点的一个有限集合,该集合:
- 或者为空
- 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:
3. 二叉树不存在度大于2的结点
4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

2、特殊的二叉树
- 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为k,且结点总数是2k−12^k -12k−1,则它就是满二叉树。

- 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
(简单理解就是:前K-1层是满的,最后一层可以不满,但是必须从左到右是连续的)

完全二叉树的节点个数是一个区间[2k−1,2k−1][2^{k-1},2^{k}-1][2k−1,2k−1]
3、二叉树的性质
-
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i−12^{i-1}2i−1个结点.
-
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2h−12^{h -1}2h−1.
-
对任何一棵二叉树, 如果度为0其叶结点个数为n0n_0n0, 度为2的分支结点个数为n1n_1n1 ,则有n0=n2+1n_0= n_2+1n0=n2+1
-
若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1)h=\log_{2}(n+1)h=log2(n+1) . (ps:h=log2(n+1)h=\log_{2}(n+1)h=log2(n+1) 是log以2为底,n+1为对数)
-
对于完全二叉树,其度为1的节点只有0或1个。
-
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
- 若i>0i>0i>0,i位置节点的双亲序号:(i−1)/2(i-1)/2(i−1)/2;i=0i=0i=0,i为根节点编号,无双亲节点
- 若2i+1<n2i+1<n2i+1<n,该节点是左孩子节点,序号为:2i+1,2i+1>=n2i+1,2i+1>=n2i+1,2i+1>=n否则无左孩子
- 若2i+2<n2i+2<n2i+2<n,该节点是右孩子节点,序号为:2i+2,2i+2>=n2i+2,2i+2>=n2i+2,2i+2>=n否则无右孩子

4、二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
- 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。
二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

- 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面我们学到高阶数据结构如红黑树等会用到三叉链。

typedef int DateType;
//二叉链表
typedef struct BinaryTreeNode
{struct BinaryTreeNode* _pLeft; //左孩子节点struct Tree* __pRight; //右孩子节点DateType _data; //节点中的数据域
}BinaryTreeNode;
typedef int DateType;
//三叉链表
typedef struct BinaryTreeNode
{struct BinaryTreeNode* _pParent;//指向当前节点的双亲struct BinaryTreeNode* _pLeft;//指向当前节点左孩子struct BinaryTreeNode* _pRight;//指向当前节点右孩子DateType _data; //节点中的数据域
}BinaryTreeNode;
三、结语
本章的难度不大都是一些概念的讲述,好好理解这些概念,下一篇文章我们正式去实现二叉树的顺序结构——堆!
相关文章:
【数据结构】初识二叉树(二叉树的入门知识)
初识二叉树一、树概念及结构1、树的概念2、树的相关概念3、树的表示4、树在实际中的运用(表示文件系统的目录树结构)二、二叉树概念及结构1、概念2、特殊的二叉树3、二叉树的性质4、二叉树的存储结构三、结语一、树概念及结构 1、树的概念 树是一种非线…...
RV1126笔记三十二:基于 FastDeploy 在 RV1126 上的部署示例(RV1126 上部署 YOLOv5 检测模型测试)
若该文为原创文章,转载请注明原文出处。 FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具, 支持云边端部署。提供超过 🔥160+ Text,Vision, Speech和跨模态模型📦开箱即用的部署体验,并实现🔚端到端的推理性能优化。包括 物体检测、字符识别(OCR)、…...
JVM垃圾回收——G1垃圾收集器
目录 一、什么是G1垃圾收集器 二、G1垃圾收集器的内存划分 三、G1垃圾收集器的收集过程 四、G1收集器的优缺点 五、G1收集器的JVM参数配置 一、什么是G1垃圾收集器 Garbage First(简称G1)收集器是垃圾收集器技术发展史上里程碑式的成果,它摒弃了传统垃圾收集器的…...
C语言深度剖析:关键字
C语言深度剖析:关键字C语言深度剖析:关键字前言定义与声明(补充内容)最宏大的关键字-auto最快的关键字-register关键字static被冤枉的关键字-sizeof整型在内存中的存储原码、反码、补码大小端补充理解变量内容的存储和取出为什么都是补码整型取值范围关于…...
聊一聊过度设计!
文章目录什么是过度设计?过度设计的坏处如何避免过度设计充分理解问题本身保持简单小步快跑征求其他人的意见总结新手程序员在做设计时,因为缺乏经验,很容易写出欠设计的代码,但有一些经验的程序员,尤其是在刚学习过设…...
程序员在小公司(没有大牛,人少)怎么成长?
大多数小公司都是创业公司,所以它们有着非常独特的“创业心态”。所谓创业心态通常表现为关注快速增长,竭尽所能让公司盈利,或者达成其他一些迫切目标。 在这样一家公司工作的软件开发人员,你极有可能要身兼多职,不能…...
【Fastdfs实战】在本地如何将文件上传到Linux虚拟机
作者:狮子也疯狂 专栏:《Fastdfs连续剧》 坚持做好每一步,幸运之神自然会驾凌在你的身上 目录一. 🦁 前言二. 🦁 上传原理Ⅰ. 🐇 原理图解Ⅱ. 🐇 传输原理三. 🦁 实战演示Ⅰ. &…...
ERP 系统的应用对企业财务会计信息系统内部控制的影响
(一)对企业的财务信息数据进行实时和动态管理传统的财务会计信息系统一般都是采用单一的软件系统,所以在信息的传递及处理上常常不能满足企业的需要,信息与其他部门存在不对称及滞后的现象。而ERP 系统是通过有效的技术手段将企业的各种分散的数据进行完…...
智慧物联网源码带手机端源码 物联网系统源码
在智慧工厂领域,智慧城市领域,都需要对设备进行监控。比如工厂需要对周围环境温度、湿度、气压、电压,灯的开关进行监控。这时候就需要物联网平台来进行管理。 推荐一个基于java开发的物联网平台,前端HTML带云组态、可接入视频监…...
AI绘画进军三次元,有人用它打造赛博女友?(diffusion)
目录0 写在前面1 AI绘画技术飞跃2 效果展示3 环境配置3.1 下载基础模型3.2 更新.NET和模型3.3 下载绘画模型3.4 启动项目3.5 标签配置4 结语0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理&a…...
计算机网络高频知识点
目录 一、http状态码 二、浏览器怎么数据缓存 三、强缓存与协商缓存 1、强缓存 2、协商缓存 四、简单请求与复杂请求 五、PUT 请求类型 六、GET请求类型 七、GET 和 POST 的区别 八、跨域 1、什么时候会跨域 2、解决方式 九、计算机网络的七层协议与五层协议分别指…...
谈谈前端性能优化-面试版
前言 当我们去面试的时候,很大概率会被面试官问这么一个问题:你有尝试过对项目做性能优化吗?或者你了解哪些性能优化的方法?听到这个问题的你可能是这样的: 似曾相识但又说不清楚,往往只能零散地说出那么几…...
JAVA连接数据库——JDBC的简单使用
JDBC即Java数据库连接.用来实现Java程序对数据库增删查改。 为了对接Java程序和数据库,java.sql提供了很多api包含在java.sql和javax.sql里面 结构: DriverManager接口: 每一个数据库的驱动程序都必须去到DriverManager注册,生成一个Connection Conn…...
Pandas数据查询
Pandas数据查询 Pandas查询数据的几种方法 df.loc方法,根据行、列的标签值查询 df.iloc方法,根据行、列的数字位置查询 df.where方法 df.query方法 .loc既能查询,又能覆盖写入,强烈推荐! Pandas使用df.loc查询数据…...
NLP-统计词频之处理停用词
前言 本文是该专栏的第1篇,后面会持续分享NLP的各种干货知识,值得关注。 一般来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或者应用服务。 举个例子,如Facebook News Feed这种社交网站推送,它的算法知道你的兴趣是自然语言处理,就会推送相关的广告或者…...
sort 定制排序规则(配合functools.cmp_to_key())
sort 定制排序规则(配合functools.cmp_to_key()) 配合例题学习 题目链接:179. 最大数 题目大意:给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数。 注意&a…...
【华为OD机试模拟题】用 C++ 实现 - 内存池(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明内存池题目输入输出示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查看地址:…...
Python--深入浅出的装饰器--1
本章一起深入浅出一下装饰器。前面我们讲过一章装饰器了。不知道各位看懂了多少。每太看懂也没关系,本章就一起实操一下。简单的例子例1例2上述的两个例子,执行结果为:1423.为什么呢???解析语法糖ÿ…...
如何从0创建Spring Cloud Alibaba(多模块)
以一个父工程带两个Module(test1、test2)为例。 一、创建父工程 由于是模块化项目,那么父工程不需要实际的代码逻辑,因此无需创建src,那么可以有几种方式创建,例如: 使用Spring Initializr脚…...
【华为OD机试模拟题】用 C++ 实现 - 某公司组织招聘(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明招聘 | 某公司组织题目输入输出示例一输入输出说明示例二输入输出说明示例三输入输出说明...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
