单调栈(C/C++)
目录
1. 单调栈的定义
2. 单调栈的常见用途
3. 案例分析
3.1 暴力解法
3.2 单调栈
4. 单调栈总结
1. 单调栈的定义
单调栈顾名思义,就是栈内的元素是单调的。根据栈内元素的单调性的不同,可以分为:
单调递增栈:栈内元素是单调递增的栈。
单调递减栈:栈内元素是单调递减的栈。
2. 单调栈的常见用途
单调栈的用途:给定一个序列,指定一个序列中的元素,求解该元素 左侧/右侧 第一个比自身 小/大的元素。
这便是单调栈的常见用途。下面结合具体的例子来理解单调栈哈!N
3. 案例分析
原题链接:
496. 下一个更大元素 I - 力扣(LeetCode)
https://leetcode.cn/problems/next-greater-element-i/
题目描述:
nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。
给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,nums1 是 nums2 的子集。
对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是 -1 。
返回一个长度为 nums1.length 的数组 ans 作为答案,满足 ans[i] 是如上所述的 下一个更大元素 。
3.1 暴力解法
暴力解法的思路就比较简单了。我们先初始化一个数组 ret,用他的下标表示 nums2 中的每一个元素,对应下标的值表示右侧第一个比它大的元素。然后从后往前(从前向后也行的)遍历 nums2 数组中的元素,遍历每一个元素时向后找比该元素更大的数,如果找到则将对应的结果保存到 下标为遍历元素的位置处,如果没有找到的话就将 -1 保存到下标为遍历元素的位置处。
得到了 nums2 数组中每个元素的右边第一个比自身大的元素后,只需要遍历一次 nums1 数组,在 ret 数组中找到结果就行啦!!
假设 nums2 数组的大小为 N,在求 nums2 数组中的每一个元素右侧第一个比自身大的数时,时间复杂度是一个等差数列的求和,即 O(N*N) 。在遍历 nums1 数组时,因为 nums1 数组中的元素是nums2 数组中元素的子集,遍历 nums1 的时间复杂度为 O(N),所以总的时间复杂度为:O(N^2)。
int* nextGreaterElement(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize)
{int ret[10010];int j;for(int i = nums2Size - 1; i>=0;i--){for(j = i + 1; j < nums2Size; j++){if(nums2[j] > nums2[i]){ret[nums2[i]] = nums2[j];break;}}if(j == nums2Size){ret[nums2[i]] = -1;}}*returnSize = nums1Size;int* array = (int*)malloc(sizeof(int)*nums1Size);for(int i = 0;i<nums1Size;i++){array[i] = ret[nums1[i]];}return array;
}
3.2 单调栈
单调栈的应用思路和双指针算法大体思路是一致的。先分析暴力解法怎么做,然后分析具体题目,找到其中隐藏的性质,从而达到优化时间效率的目的。
emm怎么分析的就不说了,后面会总结的。经过分析该问题发现:在向右找比自身大的元素时,哪些下标更大的,但是值却更小的元素是不可能作为结果输出到 ret 数组的。
分析到这里我们就可以用单调栈(为啥呢?找的是右侧第一个比自身大的元素,第一这两个字很能说明问题)来解决问题了!!我们这里使用的是用数组模拟的栈哈!效率比STL更高一点。向右找比自身大元素时,需要从后往前遍历 nums2 数组。
我们还是以上面的 3 4 7 2 5 来举例分析,开始遍历到 5 这个元素,此时栈为空,那就表明 5 这个元素右侧没有比自身大的元素(这里也能够说明为啥向右找需要从后往前遍历),将结果保存到 ret 数组。然后将 5 压入栈中。遍历到 2 时发现 2 小于栈顶的元素 5,表明 2 这个元素右侧第一个比自身大的元素是 5,将结果保存到 ret 数组中。遍历到 7 时,发现 7 大于栈顶的元素 2,这就是我们刚才说的,2 是不可能作为结果输出的,所以需要将栈顶的 2 弹出。弹出之后栈顶的元素就是 5 啦,同样 小于 7,但下标大于 7 的下标,需要再次弹出。此时我们发现栈里面已经没有元素了,说明 7 的右侧没有比自身大的元素 返回 -1。然后将 7 压入栈中。其他的元素就同理啦!
同样假设 nums2 数组的大小为 N,我们经过分析不难发现,nums2 中的元素 最多被 压栈一次,弹栈一次,所以找 nums2 数组中 右侧第一个 比自身大的数的时间复杂度为 O(N),遍历nums1数组输出结果时也是 O(N),因此总的时间复杂度就是 O(N)。
int* nextGreaterElement(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize){int stack[nums2Size + 1], top = 0;int ret[10010];for(int i = nums2Size - 1; i >= 0; i--){while(top && nums2[i] >= stack[top]){top--;}if(top){ret[nums2[i]] = stack[top];}else{ret[nums2[i]] = -1;}stack[++top] = nums2[i];}int* array = (int*)malloc(sizeof(int)*nums1Size);for(int i = 0;i<nums1Size;i++){array[i] = ret[nums1[i]];}*returnSize = nums1Size;return array;
}
4. 单调栈总结
单调栈的常见用途就是这个啦!显然是有四种情况的:
1:向左找第一个比自身大的数。
2:向左找第一个比自身小的数。
3:向右找第一个比自身大的数。
4:向右找第一个比自身小的数。
通过以上的解题我们可能会有以下问题:
1:从前往后遍历还是从后往前遍历?
答:向右找数从后往前遍历,向左找数从前往后遍历。
2:弹栈的条件之一是大于等于还是小于等于?
答:找比自身大的数是大于等于正在遍历的数,找比自身小的数是小于等于正在遍历的数。
相关文章:

单调栈(C/C++)
目录 1. 单调栈的定义 2. 单调栈的常见用途 3. 案例分析 3.1 暴力解法 3.2 单调栈 4. 单调栈总结 1. 单调栈的定义 单调栈顾名思义,就是栈内的元素是单调的。根据栈内元素的单调性的不同,可以分为: 单调递增栈:栈内元素是单…...

算法设计与智能计算 || 专题一: 算法基础
专题一: 算法基础 文章目录专题一: 算法基础1. 算法的定义及特点1.1 算法的基本特征1.2 算法的基本要素1.3 算法的评定2 算法常见执行方法2.1 判断语句2.2 循环语句2.3 综合运用3. 计算复杂度4. 代码的重用5. 类函数的定义与使用5.1 定义类5.2 调用类函数1. 算法的定义及特点 …...

用javascript分类刷leetcode13.单调栈(图文视频讲解)
239. 滑动窗口最大值 (hard) 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1: 输入:nums [1,…...

英语基础语法学习(B站英语电力公司)
1. 句子结构 五大基本句型: 主谓主谓宾主谓宾宾主谓宾宾补主系表 谓语: 一般来说,谓语是指主语发出的动作。(动词)但是很多句子是没有动作的,但是还是必须要有谓语。(此时需要be动词&#x…...

【计算机网络】网络层IP协议
文章目录一、认识IP协议二、IP协议头部格式三、IP地址划分1. IP地址分类2. 子网划分四、IP地址数量危机1. IP地址的数量限制2. NAT技术五、私网IP和公网IP六、路由1. 认识路由2. 路由表生成算法一、认识IP协议 IP协议是Internet Protocol(互联网协议)的…...
Eclipse快捷键大全
编辑类快捷键Ctrl1: 快速修复(最经典的快捷键, 可以解决很多问题, 比如import类、try catch包围等)CtrlShiftF: 格式化当前代码CtrlShiftM: 添加类的import导入CtrlShiftO: 组织类的导入(既有CtrlShiftM的作用,又可以去除没用的导入, 一般用这个导入包)CtrlY: 重做(与CtrlZ相反…...

JavaScript 高级2 :构造函数和原型 d331702016e84f54b3594ae05e0eeac
JavaScript 高级2 :构造函数和原型 Date: January 16, 2023 Text: 构造函数和原型、继承、ES5中的新增方法 目标 能够使用构造函数创建对象 能够说出原型的作用 能够说出访问对象成员的规则 能够使用 ES5新增的一些方法 构造函数和原型 概述 在典型的 OOP 的…...
maven-war-plugin插件 overlays maven-war-plugin翻译
说明 翻译maven-war-plugin插件的部分内容 官方地址为:https://maven.apache.org/plugins/maven-war-plugin/index.html Overview 概述 Introduction 介绍 Apache Maven WAR Plugin apache maven war 插件 The WAR Plugin is responsible for collecting all artifa…...

【数据结构】初识二叉树(二叉树的入门知识)
初识二叉树一、树概念及结构1、树的概念2、树的相关概念3、树的表示4、树在实际中的运用(表示文件系统的目录树结构)二、二叉树概念及结构1、概念2、特殊的二叉树3、二叉树的性质4、二叉树的存储结构三、结语一、树概念及结构 1、树的概念 树是一种非线…...
RV1126笔记三十二:基于 FastDeploy 在 RV1126 上的部署示例(RV1126 上部署 YOLOv5 检测模型测试)
若该文为原创文章,转载请注明原文出处。 FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具, 支持云边端部署。提供超过 🔥160+ Text,Vision, Speech和跨模态模型📦开箱即用的部署体验,并实现🔚端到端的推理性能优化。包括 物体检测、字符识别(OCR)、…...

JVM垃圾回收——G1垃圾收集器
目录 一、什么是G1垃圾收集器 二、G1垃圾收集器的内存划分 三、G1垃圾收集器的收集过程 四、G1收集器的优缺点 五、G1收集器的JVM参数配置 一、什么是G1垃圾收集器 Garbage First(简称G1)收集器是垃圾收集器技术发展史上里程碑式的成果,它摒弃了传统垃圾收集器的…...

C语言深度剖析:关键字
C语言深度剖析:关键字C语言深度剖析:关键字前言定义与声明(补充内容)最宏大的关键字-auto最快的关键字-register关键字static被冤枉的关键字-sizeof整型在内存中的存储原码、反码、补码大小端补充理解变量内容的存储和取出为什么都是补码整型取值范围关于…...

聊一聊过度设计!
文章目录什么是过度设计?过度设计的坏处如何避免过度设计充分理解问题本身保持简单小步快跑征求其他人的意见总结新手程序员在做设计时,因为缺乏经验,很容易写出欠设计的代码,但有一些经验的程序员,尤其是在刚学习过设…...

程序员在小公司(没有大牛,人少)怎么成长?
大多数小公司都是创业公司,所以它们有着非常独特的“创业心态”。所谓创业心态通常表现为关注快速增长,竭尽所能让公司盈利,或者达成其他一些迫切目标。 在这样一家公司工作的软件开发人员,你极有可能要身兼多职,不能…...

【Fastdfs实战】在本地如何将文件上传到Linux虚拟机
作者:狮子也疯狂 专栏:《Fastdfs连续剧》 坚持做好每一步,幸运之神自然会驾凌在你的身上 目录一. 🦁 前言二. 🦁 上传原理Ⅰ. 🐇 原理图解Ⅱ. 🐇 传输原理三. 🦁 实战演示Ⅰ. &…...
ERP 系统的应用对企业财务会计信息系统内部控制的影响
(一)对企业的财务信息数据进行实时和动态管理传统的财务会计信息系统一般都是采用单一的软件系统,所以在信息的传递及处理上常常不能满足企业的需要,信息与其他部门存在不对称及滞后的现象。而ERP 系统是通过有效的技术手段将企业的各种分散的数据进行完…...

智慧物联网源码带手机端源码 物联网系统源码
在智慧工厂领域,智慧城市领域,都需要对设备进行监控。比如工厂需要对周围环境温度、湿度、气压、电压,灯的开关进行监控。这时候就需要物联网平台来进行管理。 推荐一个基于java开发的物联网平台,前端HTML带云组态、可接入视频监…...

AI绘画进军三次元,有人用它打造赛博女友?(diffusion)
目录0 写在前面1 AI绘画技术飞跃2 效果展示3 环境配置3.1 下载基础模型3.2 更新.NET和模型3.3 下载绘画模型3.4 启动项目3.5 标签配置4 结语0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理&a…...

计算机网络高频知识点
目录 一、http状态码 二、浏览器怎么数据缓存 三、强缓存与协商缓存 1、强缓存 2、协商缓存 四、简单请求与复杂请求 五、PUT 请求类型 六、GET请求类型 七、GET 和 POST 的区别 八、跨域 1、什么时候会跨域 2、解决方式 九、计算机网络的七层协议与五层协议分别指…...

谈谈前端性能优化-面试版
前言 当我们去面试的时候,很大概率会被面试官问这么一个问题:你有尝试过对项目做性能优化吗?或者你了解哪些性能优化的方法?听到这个问题的你可能是这样的: 似曾相识但又说不清楚,往往只能零散地说出那么几…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...