当前位置: 首页 > news >正文

人工智能-深度学习之延后初始化

到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 我们定义了网络架构,但没有指定输入维度。

  • 我们添加层时没有指定前一层的输出维度。

  • 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。

实例化网络

from mxnet import np, npx
from mxnet.gluon import nnnpx.set_np()def get_net():net = nn.Sequential()net.add(nn.Dense(256, activation='relu'))net.add(nn.Dense(10))return netnet = get_net()

此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。

print(net.collect_params)
print(net.collect_params())
<bound method Block.collect_params of Sequential((0): Dense(-1 -> 256, Activation(relu))(1): Dense(-1 -> 10, linear)
)>
sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

注意,当参数对象存在时,每个层的输入维度为-1。 MXNet使用特殊值-1表示参数维度仍然未知。 此时,尝试访问net[0].weight.data()将触发运行时错误, 提示必须先初始化网络,然后才能访问参数。 现在让我们看看当我们试图通过initialize函数初始化参数时会发生什么。

net.initialize()
net.collect_params()
[07:01:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

如我们所见,一切都没有改变。 当输入维度未知时,调用initialize不会真正初始化参数。 而是会在MXNet内部声明希望初始化参数,并且可以选择初始化分布。

接下来让我们将数据通过网络,最终使框架初始化参数。

X = np.random.uniform(size=(2, 20))
net(X)net.collect_params()
sequential0_ (Parameter dense0_weight (shape=(256, 20), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, 256), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

一旦我们知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。 

相关文章:

人工智能-深度学习之延后初始化

到目前为止&#xff0c;我们忽略了建立网络时需要做的以下这些事情&#xff1a; 我们定义了网络架构&#xff0c;但没有指定输入维度。 我们添加层时没有指定前一层的输出维度。 我们在初始化参数时&#xff0c;甚至没有足够的信息来确定模型应该包含多少参数。 有些读者可…...

Jupyter Notebook交互式开源笔记本工具

1、官网 http://jupyter.org/ 2、什么是Jupyter Notebook Jupyter Notebook一个交互式的开源笔记本工具&#xff0c;可以用于编写、运行、和共享代码、文本、图形等内容。 如下文本、代码、图形 支持多种编程语言&#xff0c;包括python、R和Julia等&#xff0c;可以走一个…...

基于晶体结构算法的无人机航迹规划-附代码

基于晶体结构算法的无人机航迹规划 文章目录 基于晶体结构算法的无人机航迹规划1.晶体结构搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用晶体结构算法来优化无人机航迹规划。 …...

刷题笔记day11-栈与队列2

20. 有效的括号 这个是典型的使用栈&#xff0c;来进行匹配。 因为栈是先进后出&#xff0c;所以&#xff0c;最近的左括号一定在栈顶。如果不是&#xff0c;则就是不匹配了。 func isValid(s string) bool {stack : Stack{}dict : map[byte]byte {): (,]: [,}: {,}for _, it…...

ngixn的指令

Nginx是一个高性能的HTTP和反向代理服务器&#xff0c;它可以处理静态资源、动态内容、负载均衡、反向代理和HTTP缓存等任务。本文将详细介绍在CentOS上安装和配置Nginx服务器&#xff0c;并讲解Nginx常用指令。 安装Nginx 在CentOS上安装Nginx非常简单&#xff0c;只需要执行…...

管理类联考——数学——汇总篇——知识点突破——代数——函数、方程——记忆

文章目录 考点记忆/考点汇总——按大纲 整体局部 本篇思路&#xff1a;根据各方的资料&#xff0c;比如名师的资料&#xff0c;按大纲或者其他方式&#xff0c;收集/汇总考点&#xff0c;即需记忆点&#xff0c;在通过整体的记忆法&#xff0c;比如整体信息很多&#xff0c;通常…...

2014年亚太杯APMCM数学建模大赛C题公共基础课教师专业化培养方式研究求解全过程文档及程序

2014年亚太杯APMCM数学建模大赛 C题 公共基础课教师专业化培养方式研究 原题再现 近年来&#xff0c;世界基础工业、信息产业、服务业的跨越式发展引发了大量人才需求&#xff0c;导致了职业教育的飞速发展&#xff0c;除原有专科层次高等职业教育院校外&#xff0c;大量普通…...

【广州华锐互动】VR历史古城复原:沉浸式体验古代建筑,感受千年风华!

在科技日新月异的今天&#xff0c;虚拟现实&#xff08;VR&#xff09;技术已经成为了我们生活中不可或缺的一部分。从娱乐游戏到医疗健康&#xff0c;从教育培训到房地产销售&#xff0c;VR技术的应用领域日益广泛。而近年来&#xff0c;VR技术在文化遗产保护和古迹复原方面的…...

http和https分别是什么?

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;和HTTPS&#xff08;HTTP Secure&#xff09;是互联网上应用最为广泛的两类协议&#xff0c;都是用于在网络中进行数据交换。 1.HTTP&#xff1a; HTTP是一种无状态的协议&#xff0c;即服务器并不保持与客户端的连接…...

C语言--一个球从100m高度自由落下,每次落地后反弹回原高度的一半,再落下,再反弹。求它在第10次落地时共经过多少米,第10次反弹多高

一.思路分析 这是一个简单的物理题目&#xff0c;解题思路比较明确。程序使用 for 循环来模拟球的下落和反弹过程&#xff0c;通过多次计算得到最终结果&#xff0c;最后使用 printf 函数将结果输出。 定义初始高度 height 和总共经过的米数 distance 的变量&#xff0c;初始化…...

基础知识:位运算

基础知识&#xff1a;位运算 1. 两类表达式2. 项目中用到位运算的&#x1f330; 1. 两类表达式 2. 项目中用到位运算的&#x1f330; 在一个表中增加一个字段&#xff0c;控制报餐的6个字段包括午餐、晚餐、夜餐1、夜餐2、白班、晚班。正常在表中需要增加6个字段来做开关&…...

Android菜单Menu详解

菜单资源文件通常放置在res\menu目录下&#xff0c;在创建项目时&#xff0c;默认不自动创建menu目录&#xff0c;所以需手动创建。 Android Resource Directory→ value menu 或在创建根元素为<menu></menu>标记的xml文件对自动气建眼 res→Android Resounce File…...

win10 + cmake3.17 + vs2017编译osgearth2.7.0遇到的坑

坑1&#xff1a;debug模式下生成osgEarthAnnotation时 错误&#xff1a;xmemory0(881): error C2440: “初始化”: 无法从“std::pair<const _Kty,_Ty>”转换为 to _Objty 出错位置&#xff1a;src/osgEarthFeatures/FeatureSourceIndexNode.cpp 解决办法&#xff1a; …...

【Linux网络编程_TCP/UDP_字节序_套接字 实现: FTP 项目_局域网聊天项目 (已开源) 】.md updata:23/11/05

文章目录 TCP/UDP对比端口号作用字节序字节序转换api套接字 socket实现网络通讯服务端 逻辑思路demo&#xff1a; 满血版双方通讯/残血版多方通讯 &#xff08;配合进程实现&#xff09;服务端 demo客户端 demo FTP 项目实现sever demo:client demo: 局域网多方通讯 &#xff0…...

SpringBoot日志基础

1.yml 说明&#xff1a;配置yml文件。debug、info、warn、error。 logging:level:root: debug2.指定某个包 logging:level:root: info # 设置某个包的日志级别com.forever.controller: debug 3.分组调试 logging:# 设置分组group:ebank: com.forever.controlleriservic…...

linux文章导航栏

linux文章导航栏 问价解压缩大全Linux tar 备忘清单zip文件解压缩命令全 ubuntuubuntu18.04安装教程\搜狗输入法\网络配置教程Linux静态库和动态库 shellShell脚本命令...

Adobe:受益于人工智能,必被人工智能反噬

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 总结&#xff1a; &#xff08;1&#xff09;Adobe(ADBE)受益于生成式人工智能的兴起&#xff0c;其一直能实现两位数的收入增长就证明了这一点。 &#xff08;2&#xff09;在生成式人工智能兴起时&#xff0c;该公司就快…...

VScode配置 github 上传代码

初始化&#xff0c;设置用户名和密码 # 设置你的 Git 用户名 git config --global user.name author# 设置你的 Git 邮箱 git config --global user.email authorgmail.com# 确保 Git 输出带有颜色 git config --global color.ui auto​# 查看 Git 配置 git list1. 初始化本地…...

mysql根据条件导出表数据(`--where=“文本“`)

本文只讲导出&#xff0c;导入可以参考不同MySQL服务的表以及库的数据迁移&#xff08;/备份&#xff09;-CSDN博客 现在先查下migration_one.table_11里有什么&#xff1a; SELECT * FROM migration_one.table_11;id name ------ -------- 12321 hehe 1321 …...

MySQL复习总结(二):进阶篇(索引)

文章目录 一、存储引擎1.1 MySQL体系结构1.2 存储引擎介绍1.3 存储引擎特点1.4 存储引擎选择 二、索引2.1 基本介绍2.2 索引结构2.3 索引分类2.4 索引语法2.5 SQL性能分析2.6 索引使用2.6.1 最左前缀法则2.6.2 范围查询2.6.3 索引失效情况2.6.4 SQL提示2.6.5 覆盖索引2.6.6 前缀…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...