人工智能-深度学习之延后初始化
到目前为止,我们忽略了建立网络时需要做的以下这些事情:
-
我们定义了网络架构,但没有指定输入维度。
-
我们添加层时没有指定前一层的输出维度。
-
我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。
有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。
在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。
实例化网络
from mxnet import np, npx
from mxnet.gluon import nnnpx.set_np()def get_net():net = nn.Sequential()net.add(nn.Dense(256, activation='relu'))net.add(nn.Dense(10))return netnet = get_net()
此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。
print(net.collect_params)
print(net.collect_params())
<bound method Block.collect_params of Sequential((0): Dense(-1 -> 256, Activation(relu))(1): Dense(-1 -> 10, linear) )> sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32) )
注意,当参数对象存在时,每个层的输入维度为-1。 MXNet使用特殊值-1表示参数维度仍然未知。 此时,尝试访问net[0].weight.data()
将触发运行时错误, 提示必须先初始化网络,然后才能访问参数。 现在让我们看看当我们试图通过initialize
函数初始化参数时会发生什么。
net.initialize()
net.collect_params()
[07:01:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32) )
如我们所见,一切都没有改变。 当输入维度未知时,调用initialize
不会真正初始化参数。 而是会在MXNet内部声明希望初始化参数,并且可以选择初始化分布。
接下来让我们将数据通过网络,最终使框架初始化参数。
X = np.random.uniform(size=(2, 20))
net(X)net.collect_params()
sequential0_ (Parameter dense0_weight (shape=(256, 20), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, 256), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32) )
一旦我们知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。
相关文章:
人工智能-深度学习之延后初始化
到目前为止,我们忽略了建立网络时需要做的以下这些事情: 我们定义了网络架构,但没有指定输入维度。 我们添加层时没有指定前一层的输出维度。 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。 有些读者可…...

Jupyter Notebook交互式开源笔记本工具
1、官网 http://jupyter.org/ 2、什么是Jupyter Notebook Jupyter Notebook一个交互式的开源笔记本工具,可以用于编写、运行、和共享代码、文本、图形等内容。 如下文本、代码、图形 支持多种编程语言,包括python、R和Julia等,可以走一个…...

基于晶体结构算法的无人机航迹规划-附代码
基于晶体结构算法的无人机航迹规划 文章目录 基于晶体结构算法的无人机航迹规划1.晶体结构搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用晶体结构算法来优化无人机航迹规划。 …...
刷题笔记day11-栈与队列2
20. 有效的括号 这个是典型的使用栈,来进行匹配。 因为栈是先进后出,所以,最近的左括号一定在栈顶。如果不是,则就是不匹配了。 func isValid(s string) bool {stack : Stack{}dict : map[byte]byte {): (,]: [,}: {,}for _, it…...
ngixn的指令
Nginx是一个高性能的HTTP和反向代理服务器,它可以处理静态资源、动态内容、负载均衡、反向代理和HTTP缓存等任务。本文将详细介绍在CentOS上安装和配置Nginx服务器,并讲解Nginx常用指令。 安装Nginx 在CentOS上安装Nginx非常简单,只需要执行…...

管理类联考——数学——汇总篇——知识点突破——代数——函数、方程——记忆
文章目录 考点记忆/考点汇总——按大纲 整体局部 本篇思路:根据各方的资料,比如名师的资料,按大纲或者其他方式,收集/汇总考点,即需记忆点,在通过整体的记忆法,比如整体信息很多,通常…...

2014年亚太杯APMCM数学建模大赛C题公共基础课教师专业化培养方式研究求解全过程文档及程序
2014年亚太杯APMCM数学建模大赛 C题 公共基础课教师专业化培养方式研究 原题再现 近年来,世界基础工业、信息产业、服务业的跨越式发展引发了大量人才需求,导致了职业教育的飞速发展,除原有专科层次高等职业教育院校外,大量普通…...

【广州华锐互动】VR历史古城复原:沉浸式体验古代建筑,感受千年风华!
在科技日新月异的今天,虚拟现实(VR)技术已经成为了我们生活中不可或缺的一部分。从娱乐游戏到医疗健康,从教育培训到房地产销售,VR技术的应用领域日益广泛。而近年来,VR技术在文化遗产保护和古迹复原方面的…...
http和https分别是什么?
HTTP(Hypertext Transfer Protocol)和HTTPS(HTTP Secure)是互联网上应用最为广泛的两类协议,都是用于在网络中进行数据交换。 1.HTTP: HTTP是一种无状态的协议,即服务器并不保持与客户端的连接…...

C语言--一个球从100m高度自由落下,每次落地后反弹回原高度的一半,再落下,再反弹。求它在第10次落地时共经过多少米,第10次反弹多高
一.思路分析 这是一个简单的物理题目,解题思路比较明确。程序使用 for 循环来模拟球的下落和反弹过程,通过多次计算得到最终结果,最后使用 printf 函数将结果输出。 定义初始高度 height 和总共经过的米数 distance 的变量,初始化…...

基础知识:位运算
基础知识:位运算 1. 两类表达式2. 项目中用到位运算的🌰 1. 两类表达式 2. 项目中用到位运算的🌰 在一个表中增加一个字段,控制报餐的6个字段包括午餐、晚餐、夜餐1、夜餐2、白班、晚班。正常在表中需要增加6个字段来做开关&…...
Android菜单Menu详解
菜单资源文件通常放置在res\menu目录下,在创建项目时,默认不自动创建menu目录,所以需手动创建。 Android Resource Directory→ value menu 或在创建根元素为<menu></menu>标记的xml文件对自动气建眼 res→Android Resounce File…...

win10 + cmake3.17 + vs2017编译osgearth2.7.0遇到的坑
坑1:debug模式下生成osgEarthAnnotation时 错误:xmemory0(881): error C2440: “初始化”: 无法从“std::pair<const _Kty,_Ty>”转换为 to _Objty 出错位置:src/osgEarthFeatures/FeatureSourceIndexNode.cpp 解决办法: …...
【Linux网络编程_TCP/UDP_字节序_套接字 实现: FTP 项目_局域网聊天项目 (已开源) 】.md updata:23/11/05
文章目录 TCP/UDP对比端口号作用字节序字节序转换api套接字 socket实现网络通讯服务端 逻辑思路demo: 满血版双方通讯/残血版多方通讯 (配合进程实现)服务端 demo客户端 demo FTP 项目实现sever demo:client demo: 局域网多方通讯 ࿰…...
SpringBoot日志基础
1.yml 说明:配置yml文件。debug、info、warn、error。 logging:level:root: debug2.指定某个包 logging:level:root: info # 设置某个包的日志级别com.forever.controller: debug 3.分组调试 logging:# 设置分组group:ebank: com.forever.controlleriservic…...
linux文章导航栏
linux文章导航栏 问价解压缩大全Linux tar 备忘清单zip文件解压缩命令全 ubuntuubuntu18.04安装教程\搜狗输入法\网络配置教程Linux静态库和动态库 shellShell脚本命令...

Adobe:受益于人工智能,必被人工智能反噬
来源:猛兽财经 作者:猛兽财经 总结: (1)Adobe(ADBE)受益于生成式人工智能的兴起,其一直能实现两位数的收入增长就证明了这一点。 (2)在生成式人工智能兴起时,该公司就快…...

VScode配置 github 上传代码
初始化,设置用户名和密码 # 设置你的 Git 用户名 git config --global user.name author# 设置你的 Git 邮箱 git config --global user.email authorgmail.com# 确保 Git 输出带有颜色 git config --global color.ui auto# 查看 Git 配置 git list1. 初始化本地…...
mysql根据条件导出表数据(`--where=“文本“`)
本文只讲导出,导入可以参考不同MySQL服务的表以及库的数据迁移(/备份)-CSDN博客 现在先查下migration_one.table_11里有什么: SELECT * FROM migration_one.table_11;id name ------ -------- 12321 hehe 1321 …...

MySQL复习总结(二):进阶篇(索引)
文章目录 一、存储引擎1.1 MySQL体系结构1.2 存储引擎介绍1.3 存储引擎特点1.4 存储引擎选择 二、索引2.1 基本介绍2.2 索引结构2.3 索引分类2.4 索引语法2.5 SQL性能分析2.6 索引使用2.6.1 最左前缀法则2.6.2 范围查询2.6.3 索引失效情况2.6.4 SQL提示2.6.5 覆盖索引2.6.6 前缀…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...