动态规划算法实现0-1背包问题Java语言实现
问题介绍:

动态规划算法:
动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化算法。它通过将问题分解为一系列子问题,并利用子问题的解来构建更大规模问题的解,从而实现对整个问题的求解。
动态规划算法通常适用于满足以下两个条件的问题:
-
重叠子问题(Overlapping Subproblems):原问题可以被分解为一系列相互重叠的子问题,这意味着解决子问题时可能会重复计算相同的子问题。
-
最优子结构(Optimal Substructure):原问题的最优解可以通过子问题的最优解来构建,即全局最优解必然包含局部最优解。
动态规划算法的基本思想是利用一个表格(通常是二维数组)来存储子问题的解,通过填表的方式逐步求解更大规模的问题,直到得到最终的解。在填表的过程中,可以利用已经计算过的子问题的解来避免重复计算。
动态规划算法一般涉及以下步骤:
-
定义状态:确定问题的状态,并设计状态表示方法。
-
确定状态转移方程:根据子问题之间的关系,建立状态转移方程,描述问题的最优解与子问题的最优解之间的关系。
-
初始化:初始化表格中的边界条件,即最简单的子问题的解。
-
递推计算:按照状态转移方程,从小规模子问题开始逐步计算,填充表格中的值,直到计算出原问题的解。
-
求解原问题:根据填充好的表格,得到原问题的最优解。
public class KnapsackProblem {public static int knapsack(int[] weights, int[] values, int capacity) {int n = weights.length;int[][] dp = new int[n + 1][capacity + 1];// 初始化第一行和第一列为0for (int i = 0; i <= n; i++) {dp[i][0] = 0;}for (int j = 0; j <= capacity; j++) {dp[0][j] = 0;}// 动态规划求解for (int i = 1; i <= n; i++) {for (int j = 1; j <= capacity; j++) {if (weights[i - 1] <= j) {// 当前物品的重量小于等于背包容量,可以选择放入背包dp[i][j] = Math.max(values[i - 1] + dp[i - 1][j - weights[i - 1]], dp[i - 1][j]);} else {// 当前物品的重量大于背包容量,无法放入背包dp[i][j] = dp[i - 1][j];}}}return dp[n][capacity];}public static void main(String[] args) {int[] weights = {2, 3, 4, 5};int[] values = {3, 4, 5, 6};int capacity = 8;int maxTotalValue = knapsack(weights, values, capacity);System.out.println("Maximum total value: " + maxTotalValue);}
}
相关文章:
动态规划算法实现0-1背包问题Java语言实现
问题介绍: 动态规划算法: 动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化算法。它通过将问题分解为一系列子问题,并利用子问题的解来构建更大规模问题的解,从而实现对整个问题的求解。 动态…...
linux查看系统版本
linux主机 hostnamectl -- 可以查看 “系统架构”,“发行版本”和“内核版本”等信息 uname -a -- 查看内核版本 cat /proc/version -- 查看当前操作系统版本信息 cat /etc/issue ,lsb_release -a(ubuntu)-- 查看…...
pg14-sql基础(四)-多表联查
多表联查 内联查询 SELECT e.department_id, e.first_name, d.department_name FROM employees e INNER JOIN departments d -- JOIN departments d ON e.department_id d.department_id;左外联查询 SELECT e.department_id, e.first_name, d.department_name FROM employees…...
el-date-picker 日期时间选择器 限时时间范围 精确到时分秒
官方的disabledDate属性:设置禁用状态,参数为当前日期,要求返回 Boolean,它只能禁用日期,对于时间并不能直接禁用,总结以下两个方法解决禁用时间: 1.通过watch去监听源数据: 1.1 组…...
轮廓线dp:GYM103446C
https://vjudge.net/contest/591700#problem/H 考虑轮廓线dp,当我们枚举到蓝色格子的时候,我们记录红色格子的状态 每个格子有4种状态 0有向下1需要向上2不用管3需向右 每次枚举的时候,我们需要考虑这个格子的三种状态: 10不放…...
羊驼免疫制备纳米抗体
纳米抗体(nanobodies,Nbs)是由比利时科学家Hamers等人在骆驼血液内首次发现的一种新型抗体,与传统抗体相比,这种抗体不存在轻链,只有重链抗体(HcAb)和两个常规的CH2和CH3区组成&…...
【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等
目录 一、安装二、擦除功能1. LaMa模型实操实例一:去除路人实操实例二:去水印实操实例三:老照片修复 2. LDM模型3. ZITS模型4. MAT模型5. FcF模型6. Manga模型 三、替换对象功能1. sd1.52. sd23. anything44. realisticVision1.45. 四个模型的…...
SQL FULL OUTER JOIN 关键字(完整外部连接)||SQL自连接 Self JOIN
SQL FULL OUTER JOIN 关键字 当左(表1)或右(表2)表记录匹配时,FULL OUTER JOIN关键字将返回所有记录。 注意: FULL OUTER JOIN可能会返回非常大的结果集! SQL FULL OUTER JOIN 语法 SELECT …...
专科医院污水处理设备构造解析及工艺流程
诸城市鑫淼环保小编带大家了解一下专科医院污水处理设备构造解析及工艺流程 主要组成部分: 1.预处理单元 处理流程的起点是预处理单元,用于去除废水中的大颗粒物质和固体废物。这一阶段通常包括隔栅和筛网,以确保进一步处理的污水清洁。 2.生…...
【RabbitMQ】RabbitMQ 消息的可靠性 —— 生产者和消费者消息的确认,消息的持久化以及消费失败的重试机制
文章目录 前言:消息的可靠性问题一、生产者消息的确认1.1 生产者确认机制1.2 实现生产者消息的确认1.3 验证生产者消息的确认 二、消息的持久化2.1 演示消息的丢失2.2 声明持久化的交换机和队列2.3 发送持久化的消息 三、消费者消息的确认3.1 配置消费者消息确认3.2…...
百万套行泊一体量产定点,中国市场「开启」智驾高低速集成
进入2023年,席卷中国市场的行泊一体概念方案进入定点、量产交付的第一波高峰期。这套方案,以高性价比、硬件复用、高低速智驾集成的模式,备受市场青睐。 本周,纵目科技宣布,Amphiman3000行泊一体产品获得长安汽车旗下…...
Gopro hero5运动相机格式化后恢复案例
Gopro运动相机以稳定著称,旗下的Hero系列销售全球。下面我们来看一个Hero5格式化后拍了少量素材的恢复案例。 故障存储:64G MicroSD卡 Exfat文件系统 故障现象: 64G的卡没备份数据时做了格式化操作又拍了一条,发现数据没有备份,客户自行使…...
Microsoft Dynamics 365 CE 扩展定制 - 6. 增强代码
在本章中,我们将介绍以下内容: 使用三层模式重构插件用QueryExpressions替换LINQ数据访问层记录自定义项中的错误将插件转换为自定义工作流活动单元测试插件业务逻辑使用内存上下文对插件进行单元测试端到端集成测试插件分析插件构建通用读取审核插件利用CRM Online实现跨来源…...
基于libopenh264 codec的svc分层流实现方案
OpenH264 http://www.openh264.org/ 是标准的H.264 encoder/decoder. ffmpeg已经集成libopenh264,但不支持svc特性。 openh264 encoder支持svc特性: 1. 时域4层:Temporal scalability up to 4 layers in a dyadic hierarchy 2. 空域4层&#…...
为机器学习算法准备数据(Machine Learning 研习之八)
本文还是同样建立在前两篇的基础之上的! 属性组合实验 希望前面的部分能让您了解探索数据并获得洞察力的几种方法。您发现了一些数据怪癖,您可能希望在将数据提供给机器学习算法之前对其进行清理,并且发现了属性之间有趣的相关性,…...
基于Python OpenCV的金铲铲自动进游戏、D牌...
基于Python OpenCV的金铲铲自动进游戏、D牌... 1. 自动点击进入游戏1.1 环境准备1.2 功能实现2. 自动D牌3. 游戏结束自动退1. 自动点击进入游戏 PS: 本测试只用于交流学习OpenCV的相关知识,不能用于商业用途,后果自负。 1.1 环境准备 需要金铲铲在win10的模拟器,我们这里选…...
c++中httplib使用
httplib文件链接:百度网盘 请输入提取码 提取码:kgnq json解析库:百度网盘 请输入提取码 提取码:oug0 一、获取token 打开postman, 在body这个参数中点击raw,输入用户名和密码 然后需要获取到域名和地址。 c++代码如下: #include "httplib.h" #in…...
Vite 的基本原理,和 webpack 在开发阶段的比较
目录 1,webpack 的流程2,Vite 的流程简单编译 3,总结 主要对比开发阶段。 1,webpack 的流程 开发阶段大致流程:指定一个入口文件,对相关的模块(js css img 等)先进行打包࿰…...
[开源]免费开源MES系统/可视化数字大屏/自动排班系统
开源系统概述: 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、免费MES、免费智能制造系统、免费排产系统、免费排班系统、免费质检系统、免费生产计划系统。 万界星空开源MES制造执行系统的Java开源版本。开源mes系统包括系统管理…...
python如何使用gspread读取google在线excel数据?
一、背景 公司使用google在线excel管理测试用例,为了方便把手工测试用到的测试数据用来做自动化用例测试数据,所以就想使用python读取在线excel数据,通过数据驱动方式,完成自动化回归测试,提升手动复制,粘…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
