chatGPT模型原理
文章目录
- 简介
- Bert
- GPT 初代
- GPT-2
- GPT-3
- chatGPT
- 开源ChatGPT
简介
openai 的 GPT 大模型的发展历程。
Bert
2018年,自然语言处理 NLP 领域也步入了 LLM 时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模任务中取得了最佳的成绩。
Bert 所作的事就是从大规模的上亿的文本预料中,随机地扣掉一部分字,形成完形填空题型,不断地学习空格处到底该填写什么。所谓语言模型,就是从大量的数据中学习复杂的上下文联系。
GPT 初代
与此同时,openai 早于 Bert 出品了一个初代 GPT 模型。
他们大致思想是一样的。都基于 Transformer 这种编码器,获取了文本内部的相互联系。

编解码的概念广泛应用于各个领域,在 NLP 领域,人们使用语言一般包括三个步骤:
接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。
语言是一个显式存在的东西,但大脑是如何将语言进行理解、转化和存储的,则是一个目前仍未探明的东西。因此,大脑理解语言这个过程,就是大脑将语言编码成一种可理解、可存储形式的过程,这个过程就叫做语言的编码。
相应的,把大脑中想要表达的内容,使用语言表达出来,就叫做语言的解码。
在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。

两者最主要的区别在于,Bert 仅仅使用了 encoder 也就是编码器部分进行模型训练,GPT 仅仅使用了 decoder 部分。两者各自走上了各自的道路,根据我粗浅的理解,GPT 的decoder 模型更加适应于文本生成领域。
我相信很多的 NLP 从业者对 LLM 的理解也大都停留在此。即,本质上讲,LLM 是一个非常复杂的编码器,将文本表示成一个向量表示,这个向量表示有助于解决 NLP 的任务。
GPT-2
我们一般的 NLP 任务,文本分类模型就只能分类,分词模型就只能分词,机器翻译也就只能完成翻译这一件事,非常不灵活。
GPT-2 主要就是在 GPT 的基础上,又添加了多个任务,扩增了数据集和模型参数,又训练了一番。
既然多个任务都在同一个模型上进行学习,还存在一个问题,这一个模型能承载的并不仅仅是任务本身,“汪小菲的妈是张兰”,这条文字包含的信息量是通用的,它既可以用于翻译,也可以用于分类,判断错误等等。也就是说,信息是脱离具体 NLP 任务存在的,举一反三,能够利用这条信息,在每一个 NLP 任务上都表现好,这个是 元学习(meta-learning),实际上就是语言模型的一脑多用。
GPT-3
大模型中的大模型
首先, GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,学习之复杂,计算之繁复不说了。

GPT-3 里的大模型计算量是 Bert-base 的上千倍。统统这些都是在燃烧的金钱,真就是 all you need is money。如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。
首先 GPT-n 系列模型都是采用 decoder 进行训练的,也就是更加适合文本生成的形式。也就是,输入一句话,输出也是一句话。也就是对话模式。
对话
对话是涵盖一切NLP 任务的终极任务。从此 NLP不再需要模型建模这个过程。比如,传统 NLP 里还有序列标注这个任务,需要用到 CRF 这种解码过程。在对话的世界里,这些统统都是冗余的。
in-context learning
以往的预训练都是两段式的,即,首先用大规模的数据集对模型进行预训练,然后再利用下游任务的标注数据集进行 finetune,时至今日这也是绝大多数 NLP 模型任务的基本工作流程。
在 GPT-3 的预训练阶段,也是按照这样多个任务同时学习的。比如“做数学加法,改错,翻译”同时进行。这其实就类似前段时间比较火的 prompt。
这种引导学习的方式,在超大模型上展示了惊人的效果:只需要给出一个或者几个示范样例,模型就能照猫画虎地给出正确答案。注意啊,是超大模型才可以,一般几亿参数的大模型是不行的。(我们这里没有小模型,只有大模型、超大模型、巨大模型)

chatGPT
chatGPT 模型上基本上和之前都没有太大变化,主要变化的是训练策略变了。
强化学习
强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。

开源ChatGPT
https://github.com/hpcaitech/ColossalAI
https://github.com/lucidrains/PaLM-rlhf-pytorch
相关文章:
chatGPT模型原理
文章目录简介BertGPT 初代GPT-2GPT-3chatGPT开源ChatGPT简介 openai 的 GPT 大模型的发展历程。 Bert 2018年,自然语言处理 NLP 领域也步入了 LLM 时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模…...
四、阻塞队列
文章目录基础概念生产者消费者概念JUC阻塞队列的存取方法ArrayBlockingQueueArrayBlockingQueue的基本使用生产者方法实现原理ArrayBlockingQueue的常见属性add方法实现offer方法实现offer(time,unit)方法put方法消费者方法实现原理remove方法poll方法poll(time,unit)方法take方…...
企业电子招投标采购系统源码之登录页面
信息数智化招采系统 服务框架:Spring Cloud、Spring Boot2、Mybatis、OAuth2、Security 前端架构:VUE、Uniapp、Layui、Bootstrap、H5、CSS3 涉及技术:Eureka、Config、Zuul、OAuth2、Security、OSS、Turbine、Zipkin、Feign、Monitor、…...
SQL零基础入门学习(十三)
上一篇(SQL零基础入门学习(十二)) SQL 视图(Views) 视图是可视化的表。 SQL CREATE VIEW 语句 在 SQL 中,视图是基于 SQL 语句的结果集的可视化的表。 视图包含行和列,就像一个…...
Java实现简单KV数据库
用Java实现一个简单的KV数据库 开发思路: 用map存储数据,再用一个List记录操作日志,开一个新线程将List中的操作写入日志文件中,再开一个线程用于网络IO服务接收客户端的命令,再启动时检查日志,如果有数据就…...
【Spark分布式内存计算框架——Spark Streaming】5. DStream(上)
3. DStream SparkStreaming模块将流式数据封装的数据结构:DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流。 3.1 DStream 是什么…...
Spring系列-9 Async注解使用与原理
背景: 本文作为Spring系列的第九篇,介绍Async注解的使用、注意事项和实现原理,原理部分会结合Spring框架代码进行。 本文可以和Spring系列-8 AOP原理进行比较阅读 1.使用方式 Async一般注解在方法上,用于实现方法的异步…...
Python自动化测试实战篇(6)用PO分层模式及思想,优化unittest+ddt+yaml+request登录接口自动化测试
这些是之前的文章,里面有一些基础的知识点在前面由于前面已经有写过,所以这一篇就不再详细对之前的内容进行描述 Python自动化测试实战篇(1)读取xlsx中账户密码,unittest框架实现通过requests接口post登录网站请求&…...
Linux 进程:父子进程
目录一、了解子进程二、创建子进程1.创建子进程2.区分父子进程三、理解子进程四、创建子进程的意义进程就是运行中的应用程序,如果一个程序较为庞大,我们可以给这个程序创建多个进程,每个进程负责一部分代码的运行。 A进程如果创建了B进程&am…...
Unity 之 实现读取代码写进Word文档功能实现 -- 软著脚本生成工具
Unity 之 实现读取代码写进Word文档功能前言一,实现步骤1.1 逻辑梳理1.2 用到工具二,实现读写文件2.1 读取目录相关2.2 读写文件三,编辑器拓展3.1 编辑器拓展介绍3.2 实现界面可视化四,源码分享4.1 工具目录4.2 完整代码前言 之所…...
Typora图床配置:Typora + PicGo + 阿里云OSS
文章目录一、前景提要二、相关链接三、搭建步骤1. 购买阿里云对象存储OSS2. 对象存储OSS:创建Bucket3. 阿里云:添加OSS访问用户及权限4. 安装Typora5. 配置PicGo方法一:使用PicGo-Core (Command line)方法二:使用PicGo(app)6. 最后…...
二进制搭建以太坊2.0节点-2023最新详细版文档
文章目录 一、配置 JWT 认证二、部署执行节点geth2.1 下载geth二进制文件2.2 geth节点启动三、部署共识节点Prysm3.1 下载Prysm脚本3.2 Prysm容器生成四、检查节点是否同步完成4.1 检查geth执行节点4.2 检查prysm共识节点4.3 geth常用命令五、节点同步详细说明5.1 启动时日志5.…...
如何简化跨网络安全域的文件发送流程,大幅降低IT人员工作量?
为什么要做安全域的隔离? 随着企业数字化转型的逐步深入,企业投入了大量资源进行信息系统建设,信息化程度日益提升。在这一过程中,企业也越来越重视核心数据资产的保护,数据资产的安全防护成为企业面临的重大挑战。 …...
带你深入了解c语言指针后续
前言 🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏: 🍔🍟🌯 c语言进阶 🔑个人信条: 🌵知行合一 🍉本篇简介:>:介绍c语言中有关指针更深层的知识. 金句分享: ✨在该…...
借助Intune无感知开启Bitlocker
希望使用 Intune 部署 BitLocker,但不知道从哪里开始?这是人们最开始使用 Intune 时最常见的问题之一。在本博客中,你将了解有关使用 Intune 管理 BitLocker 的所有信息,包括建议的设置、BitLocker CSP 在客户端上的工作方式&…...
零基础该如何转行Python工程师?学习路线是什么?
最近1年的主要学习时间,都投资到了 python 数据分析和数据挖掘上面来了,虽然经验并不是十分丰富,但希望也能把自己的经验分享下,最近也好多朋友给我留言,和我聊天,问我python该如何学习,才能少走…...
Go项目(商品微服务-1)
文章目录简介建表protohandler商品小结简介 商品微服务主要在于表的设计,建哪些表?表之间的关系是怎样的? 主要代码就是 CURD表和字段的设计是一个比较有挑战性的工作,比较难说清楚,也需要经验的积累,这里…...
机器学习——集成学习
引言 集成学习:让机器学习效果更好,单个不行,群殴走起。 分类 1. Bagging:训练多个分类器取平均(m代表树的个数)。 2.Boosting(提升算法):从弱学习器开始加,通过加权来进行训练。…...
VS编译系统 实用调试技巧
目录什么是bug?调试是什么?有多重要?debug和release的介绍windows环境调试介绍、一些调试实例如何写出(易于调试)的代码编程常见的错误什么是bug?其实bug在英文翻译中有表示臭虫的含义,因为第一次被发现的导致计算机…...
【华为OD机试模拟题】用 C++ 实现 - GPU 调度(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明GPU 调度题目输入输出示例一输入输出说明示例二输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
