当前位置: 首页 > news >正文

chatGPT模型原理

文章目录

    • 简介
    • Bert
    • GPT 初代
    • GPT-2
    • GPT-3
    • chatGPT
    • 开源ChatGPT

简介

openai 的 GPT 大模型的发展历程。

Bert

2018年,自然语言处理 NLP 领域也步入了 LLM 时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模任务中取得了最佳的成绩。
Bert 所作的事就是从大规模的上亿的文本预料中,随机地扣掉一部分字,形成完形填空题型,不断地学习空格处到底该填写什么。所谓语言模型,就是从大量的数据中学习复杂的上下文联系。

GPT 初代

与此同时,openai 早于 Bert 出品了一个初代 GPT 模型。
他们大致思想是一样的。都基于 Transformer 这种编码器,获取了文本内部的相互联系。
在这里插入图片描述

编解码的概念广泛应用于各个领域,在 NLP 领域,人们使用语言一般包括三个步骤:
接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。

语言是一个显式存在的东西,但大脑是如何将语言进行理解、转化和存储的,则是一个目前仍未探明的东西。因此,大脑理解语言这个过程,就是大脑将语言编码成一种可理解、可存储形式的过程,这个过程就叫做语言的编码。
相应的,把大脑中想要表达的内容,使用语言表达出来,就叫做语言的解码。
在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。
Transformer编码器组成的 Encoder-decoder模型

两者最主要的区别在于,Bert 仅仅使用了 encoder 也就是编码器部分进行模型训练,GPT 仅仅使用了 decoder 部分。两者各自走上了各自的道路,根据我粗浅的理解,GPT 的decoder 模型更加适应于文本生成领域。

我相信很多的 NLP 从业者对 LLM 的理解也大都停留在此。即,本质上讲,LLM 是一个非常复杂的编码器,将文本表示成一个向量表示,这个向量表示有助于解决 NLP 的任务。

GPT-2

我们一般的 NLP 任务,文本分类模型就只能分类,分词模型就只能分词,机器翻译也就只能完成翻译这一件事,非常不灵活。

GPT-2 主要就是在 GPT 的基础上,又添加了多个任务,扩增了数据集和模型参数,又训练了一番。

既然多个任务都在同一个模型上进行学习,还存在一个问题,这一个模型能承载的并不仅仅是任务本身,“汪小菲的妈是张兰”,这条文字包含的信息量是通用的,它既可以用于翻译,也可以用于分类,判断错误等等。也就是说,信息是脱离具体 NLP 任务存在的,举一反三,能够利用这条信息,在每一个 NLP 任务上都表现好,这个是 元学习(meta-learning),实际上就是语言模型的一脑多用。

GPT-3

大模型中的大模型
首先, GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,学习之复杂,计算之繁复不说了。

在这里插入图片描述
GPT-3 里的大模型计算量是 Bert-base 的上千倍。统统这些都是在燃烧的金钱,真就是 all you need is money。如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。
首先 GPT-n 系列模型都是采用 decoder 进行训练的,也就是更加适合文本生成的形式。也就是,输入一句话,输出也是一句话。也就是对话模式。

对话

对话是涵盖一切NLP 任务的终极任务。从此 NLP不再需要模型建模这个过程。比如,传统 NLP 里还有序列标注这个任务,需要用到 CRF 这种解码过程。在对话的世界里,这些统统都是冗余的。

in-context learning

以往的预训练都是两段式的,即,首先用大规模的数据集对模型进行预训练,然后再利用下游任务的标注数据集进行 finetune,时至今日这也是绝大多数 NLP 模型任务的基本工作流程。

在 GPT-3 的预训练阶段,也是按照这样多个任务同时学习的。比如“做数学加法,改错,翻译”同时进行。这其实就类似前段时间比较火的 prompt。
这种引导学习的方式,在超大模型上展示了惊人的效果:只需要给出一个或者几个示范样例,模型就能照猫画虎地给出正确答案。注意啊,是超大模型才可以,一般几亿参数的大模型是不行的。(我们这里没有小模型,只有大模型、超大模型、巨大模型)
在这里插入图片描述

chatGPT

chatGPT 模型上基本上和之前都没有太大变化,主要变化的是训练策略变了。

强化学习
强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。

在这里插入图片描述

开源ChatGPT

https://github.com/hpcaitech/ColossalAI
https://github.com/lucidrains/PaLM-rlhf-pytorch

相关文章:

chatGPT模型原理

文章目录简介BertGPT 初代GPT-2GPT-3chatGPT开源ChatGPT简介 openai 的 GPT 大模型的发展历程。 Bert 2018年,自然语言处理 NLP 领域也步入了 LLM 时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模…...

四、阻塞队列

文章目录基础概念生产者消费者概念JUC阻塞队列的存取方法ArrayBlockingQueueArrayBlockingQueue的基本使用生产者方法实现原理ArrayBlockingQueue的常见属性add方法实现offer方法实现offer(time,unit)方法put方法消费者方法实现原理remove方法poll方法poll(time,unit)方法take方…...

企业电子招投标采购系统源码之登录页面

​ 信息数智化招采系统 服务框架:Spring Cloud、Spring Boot2、Mybatis、OAuth2、Security 前端架构:VUE、Uniapp、Layui、Bootstrap、H5、CSS3 涉及技术:Eureka、Config、Zuul、OAuth2、Security、OSS、Turbine、Zipkin、Feign、Monitor、…...

SQL零基础入门学习(十三)

上一篇(SQL零基础入门学习(十二)) SQL 视图(Views) 视图是可视化的表。 SQL CREATE VIEW 语句 在 SQL 中,视图是基于 SQL 语句的结果集的可视化的表。 视图包含行和列,就像一个…...

Java实现简单KV数据库

用Java实现一个简单的KV数据库 开发思路: 用map存储数据,再用一个List记录操作日志,开一个新线程将List中的操作写入日志文件中,再开一个线程用于网络IO服务接收客户端的命令,再启动时检查日志,如果有数据就…...

【Spark分布式内存计算框架——Spark Streaming】5. DStream(上)

3. DStream SparkStreaming模块将流式数据封装的数据结构:DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流。 3.1 DStream 是什么…...

Spring系列-9 Async注解使用与原理

背景: 本文作为Spring系列的第九篇,介绍Async注解的使用、注意事项和实现原理,原理部分会结合Spring框架代码进行。 本文可以和Spring系列-8 AOP原理进行比较阅读 1.使用方式 Async一般注解在方法上,用于实现方法的异步&#xf…...

Python自动化测试实战篇(6)用PO分层模式及思想,优化unittest+ddt+yaml+request登录接口自动化测试

这些是之前的文章,里面有一些基础的知识点在前面由于前面已经有写过,所以这一篇就不再详细对之前的内容进行描述 Python自动化测试实战篇(1)读取xlsx中账户密码,unittest框架实现通过requests接口post登录网站请求&…...

Linux 进程:父子进程

目录一、了解子进程二、创建子进程1.创建子进程2.区分父子进程三、理解子进程四、创建子进程的意义进程就是运行中的应用程序,如果一个程序较为庞大,我们可以给这个程序创建多个进程,每个进程负责一部分代码的运行。 A进程如果创建了B进程&am…...

Unity 之 实现读取代码写进Word文档功能实现 -- 软著脚本生成工具

Unity 之 实现读取代码写进Word文档功能前言一,实现步骤1.1 逻辑梳理1.2 用到工具二,实现读写文件2.1 读取目录相关2.2 读写文件三,编辑器拓展3.1 编辑器拓展介绍3.2 实现界面可视化四,源码分享4.1 工具目录4.2 完整代码前言 之所…...

Typora图床配置:Typora + PicGo + 阿里云OSS

文章目录一、前景提要二、相关链接三、搭建步骤1. 购买阿里云对象存储OSS2. 对象存储OSS:创建Bucket3. 阿里云:添加OSS访问用户及权限4. 安装Typora5. 配置PicGo方法一:使用PicGo-Core (Command line)方法二:使用PicGo(app)6. 最后…...

二进制搭建以太坊2.0节点-2023最新详细版文档

文章目录 一、配置 JWT 认证二、部署执行节点geth2.1 下载geth二进制文件2.2 geth节点启动三、部署共识节点Prysm3.1 下载Prysm脚本3.2 Prysm容器生成四、检查节点是否同步完成4.1 检查geth执行节点4.2 检查prysm共识节点4.3 geth常用命令五、节点同步详细说明5.1 启动时日志5.…...

如何简化跨网络安全域的文件发送流程,大幅降低IT人员工作量?

为什么要做安全域的隔离? 随着企业数字化转型的逐步深入,企业投入了大量资源进行信息系统建设,信息化程度日益提升。在这一过程中,企业也越来越重视核心数据资产的保护,数据资产的安全防护成为企业面临的重大挑战。 …...

带你深入了解c语言指针后续

前言 🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏: 🍔🍟🌯 c语言进阶 🔑个人信条: 🌵知行合一 🍉本篇简介:>:介绍c语言中有关指针更深层的知识. 金句分享: ✨在该…...

借助Intune无感知开启Bitlocker

希望使用 Intune 部署 BitLocker,但不知道从哪里开始?这是人们最开始使用 Intune 时最常见的问题之一。在本博客中,你将了解有关使用 Intune 管理 BitLocker 的所有信息,包括建议的设置、BitLocker CSP 在客户端上的工作方式&…...

零基础该如何转行Python工程师?学习路线是什么?

最近1年的主要学习时间,都投资到了 python 数据分析和数据挖掘上面来了,虽然经验并不是十分丰富,但希望也能把自己的经验分享下,最近也好多朋友给我留言,和我聊天,问我python该如何学习,才能少走…...

Go项目(商品微服务-1)

文章目录简介建表protohandler商品小结简介 商品微服务主要在于表的设计,建哪些表?表之间的关系是怎样的? 主要代码就是 CURD表和字段的设计是一个比较有挑战性的工作,比较难说清楚,也需要经验的积累,这里…...

机器学习——集成学习

引言 集成学习:让机器学习效果更好,单个不行,群殴走起。 分类 1. Bagging:训练多个分类器取平均(m代表树的个数)。 2.Boosting(提升算法):从弱学习器开始加,通过加权来进行训练。…...

VS编译系统 实用调试技巧

目录什么是bug?调试是什么?有多重要?debug和release的介绍windows环境调试介绍、一些调试实例如何写出(易于调试)的代码编程常见的错误什么是bug?其实bug在英文翻译中有表示臭虫的含义,因为第一次被发现的导致计算机…...

【华为OD机试模拟题】用 C++ 实现 - GPU 调度(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明GPU 调度题目输入输出示例一输入输出说明示例二输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...